簡易檢索 / 詳目顯示

研究生: 周美君
Mei-chun Chou
論文名稱: 以自迴歸移動平均模型實現雙輪機器人即時調整系統參數之控制器設計
The Controller Design of Two-Wheeled Inverted Pendulum Robot Based-on ARMA Model for Parameter Estimation
指導教授: 邱士軒
Shih-hsuan Chiu
口試委員: 李貴琪
Kuei-chi Lee
黃昌群
Chang-chiun Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 85
中文關鍵詞: 雙輪倒單擺機器人極點配置自迴歸移動平均參數估測
外文關鍵詞: Two-wheeled inverted pendulum robot, Parameter estimation, Auto-regressive moving average, Pole-placement
相關次數: 點閱:291下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙輪機器人具有結構簡單、可控性強與成本低等優點,成為移動式機器人研究
    的一個主要方向。因雙輪倒單擺機器人之動態模型為一不穩定系統,故須經由控制
    器控制機器人達到平衡移動的功能。

    雙輪機器人運動控制的研究中,以現代控制為架構,並利用狀態回授控制器使
    雙輪機器人達到車身平衡、旋轉、定位與行走等。由於行走運動時,當加入未知負
    載時,機器人則無法即時因負載調整系統參數,導致雙輪倒單擺機器人無法穩定行
    走。

    基於上述問題,本研究提出以現代控制為基礎架構,利用自迴歸移動平均模式
    建立出離散時間的參數模型,針對雙輪倒單擺機器人在平衡控制下所受外界干擾力
    之情況,即時更新車身質量、慣性矩與質心位置等系統參數,配合使用極點擺放的
    方法,調整極點擺放控制器的增益值,發展出具有自適應機制的控制器,以達到即
    時自調控制器增益增加其強健性,最後並由實驗驗證此控制器之性能。


    Two-wheeled has a simple structure, low cost and easy control so that it is regarded
    as a popular research. However, two-wheeled inverted pendulum robot is an inherently
    unstable system, it needs controller to meet the basic requirement, such as, balance and
    movement.

    The study of two-wheeled inverted pendulum robot is based on modern control
    with state feedback. The robot cannot move steadily while adding unknown payload
    result in system parameters changed.

    In order to overcome the above problem, using Auto-regressive moving average
    model to build the parametric model in discrete time for updating the system parameters
    (including mass, inertial of moment and the center of gravity, etc.) By updating the
    system parameters to adjust the control gain from pole-placement controller to enhance
    its robustness. In the end, using experiments to very its performance.

    中文摘要 I ABSTRACT II Acknowledgments III Table of Contents IV List of Figures VI List of Tables VIII List of Symbols IX Chapter 1 – Introduction 1 1.1 Background 1 1.2 Literature Review 2 1.3 Purpose 6 1.4 Structure Configuration of Thesis 7 Chapter 2 – Modeling and Analysis 8 2.1 Hardware System Overview 9 2.1.1 Electrical subsystem 9 2.1.2 Sensor subsystem 14 2.1.3 Mechanical subsystem 20 2.2 System Dynamic and Analysis 22 2.2.1 Electromechanical Analysis 23 2.2.2 Wheel Analysis 25 2.2.3 Inverted Pendulum Analysis 28 2.2.4 System Dynamic Model 31 Chapter 3 –Controller Design 33 3.1 Pole-Placement Design 34 3.2 Parameter Estimation 40 3.3 ARMA-based controller design 45 Chapter 4 - Simulations and Experiments 48 4.1 The validity of the dynamic model 49 4.2 Balance mode with pole placement controller 51 4.3 Balancing Mode with ARMA model 58 Chapter 5 - Conclusion and Future Work 61 5.1 Conclusion 61 5.2 Future work 62 References 63 Biography 67

    [1] Q. Feng and K. Yamafuji, “Design and Simulation of Control Systems of an Inverted Pendulum,” Robotica, Vol. 6, pp. 235-241. (1988).
    [2] Tirmant, H., Baloh, M., Vermeiren L., Guerra, T. M. and Parent, “B2, an Alternative Two Wheeled Vehicle for an Automated Urban Transportation System,” Intelligent Vehicle Symposium, Versailles, France. (2002).
    [3] Malone, K.M., Van Der Wiel, J.W. and Saugy, B.A., “Cybernetic transport systems: lessons to be learned from user needs analysis and field experience,” Intelligent Vehicle Symposium, Vol. 2,pp. 551-556. (2002)
    [4] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized Predictive Control-Part I. The Basic Algorithm,” Automatica, Vol. 23, No. 2, pp. 137-148. (1987).
    [5] F. Grasser, A. D’arringo, S. Colombi and A. Ruffer “JOE: A Mobile, Inverted Pendulum,” IEEE Transactions on Industrial Electronics, Vol. 49, No. 1. (2002).
    [6] Schwartz, E.I., H.E., “The Inventor's Play-Ground,” Vol. 105, No. 8, pp. 69, Massachusetts Institute of Technology, Switzerland (2002).
    [7] Ha, Y., and Yuta, S., “Trajectory Tracking Control for Navigation of An Inverted Pendulum Type Self-Contained Mobile Robot”. Robotics and Autonomous Systems, Vol. 17, pp. 65–80. (1996).
    [8] Iida, S., and Yuta, S., “Control of a Vehicle Subsystem for an Autonomous Mobile Robot with Power Wheeled Steering,” In Proceedings of the ISMCR , pp. 859–866. (1990)
    [9] Koyonagi, E., Iida, S., Kimoto, K., and Yuta, S., “A Wheeled Inverse Pendulum Type Self-Contained Mobile Robot and Its Two-Dimensional Trajectory Control,” In Proceedings of the ISMCR, pp. 891–898. (1992).
    [10] Ren, T.-J., Chen, T.-C. and Chen, C.-J., “Motion Control for a Two-Wheeled Vehicle Using a Self-Tuning PID Controller,” Control Engineering Practice, Vol.16, Issue 3, pp.365-375 (2008).
    [11] Tirmant, H., “Control Laws for Takagi-Sugeno Fuzzy models-Application to a Two Wheeled Vehicle Prototype,” Ph.D. thesis, LAMIH, University of Valenciennes. (2004).
    [12] Tirmant, H., Vermeiren, L., Guerra, T. M., Baloh, M. and Parent, M., “Real-Time Robust Control of a Two-Wheeled Vehicle: The B2,” In Proceedings of the IEEE VTS- VPP, Paris. (2004).
    [13] Tirmant, H., Vermeiren, L., Guerra, T. M. and Parent, M., “Stabilization of a Two-Wheeled Vehicle,” In Proceedings of the IEEE vehicle intelligent symposium IV’2002, Versailles. (2002).
    [14] Jung, S. and Kim, S.S. “Control Experiment of a Wheel-Driven Mobile Inverted Pendulum Using Neural Network,” IEEE Transactions on Control Systems Technology, Vol. 16, No. 2, pp. 297-303. (2008).
    [15] Sugihara, T., Nakamura and Y., Inoue, H. “Realtime Humanoid Motion Generation Through ZMP Manipulation Based on Inverted Pendulum Control,” 2002 IEEE International Conference on Robotics and Automation, Washington, D.C. (2002).
    [16] Guerra, T. M., Delmotte, F., Vermeiren, L., and Rago-Tirmant, H. “Compensation and Division Control Law for Fuzzy Models,” The 10th IEEE International Conference on Fuzzy Systems, Melbourne, Australia. (2001).
    [17] Pathak, K., Franch, J. and Agrawal, S.K., “Velocity and Position Control of a Wheeled Inverted Pendulum by Partial Feedback Linearization,” IEEE Trans. Robotics, Vol.21 No.3. (2005).
    [18] Haddad, M., Khalil, W. and Lehtihet, H.E., “Trajectory Planning of Unicycle Mobile Robots With a Trapezoidal-Velocity Constraint,” IEEE Transactions on Robotics, Vol.26, No.5, pp.9540-962(2010).
    [19] Liu, X. and Zhang, Q. “New Approaches to H-Infinity Controller Designs Based on Fuzzy Observers for T-S Fuzzy Systems via LMI,” Automatica, Vol. 39, No. 9, pp. 1571-1582. (2003)
    [20] Ha, Y.-S. and Yuta, S., “Trajectory Tracking Control for Navigation of The Inverse Pendulum Type Self-Contained Mobile Robot,” Robotics and Autonomous Systems, Vol. 17 No. 1-2, pp. 65-80. (1996).
    [21] Huibert Kwakernaak and Raphael Sivan, Linear Optimal Control Systems, Wiley-Interscience, Hoboken, pp. 320-325. (1972).
    [22] Thomas Kailath, Linear Systems, Prentice-Hall, USA, pp. 166-188. (1980).
    [23] Nguyen, C. C. “Arbitrary Eigenvalue Assignments for Linear Time-Varying Multivariable Control Systems,” International Journal of Control, Vol. 45, No. 3, pp. 1051-1057. (1987).
    [24] Valasek, M. and Olgac, N. “Efficient Pole Placement Technique for Linear Time-Variant SISO Systems,” IEE Proceedings: Control Theory and Applications, Vol. 142, pp. 451–458. (1995).
    [25] Lee, H.C., Choi, J.W., “Ackermann-Like Eigenvalue Assignment Formulae for Linear Time-Varying Systems,” IEE Proceedings: Control Theory and Applications, Vol. 152, pp. 427–434. (2005).
    [26] Yasuhiko Mutoh, “Simple Design of the State Observer for Linear Time-varying Systems, In Proceedings of ICINCO-SPSMC, Milan, Italy. (2009)
    [27] Nguyen, H.G., Morrell, J., Mullens, K., Burmeister, A., Miles, S., Farrington, N., Thomas, K., Gage, D.W., “ A Segway RMP-based robotic transport system,” Proceedings of SPIE - The International Society for Optical Engineering, PA, USA (2004).
    [28] Kim, Y., S.H. Kim and Y.K. Kwak, “Dynamic Analysis of a Nonholonomic Two-Wheeled Inverted Pendulum Robot,” Journal of Intelligent and Robotic Systems, Vol.44, Issue 1, pp.25-46 (2005).
    [29] Lelic, M. A. and Zarrop, M. B., “Generalized pole-placement self-tuning controller. Part 1. Basic algorithm,” International Journal of Control, Vol. 46, No. 2, pp. 547-568. (1987).
    [30] Katsuhiko Ogata, Modern Control Engineering, Prentice Hall, New Jersey, U.S.A., pp. 827-835. (2002).
    [31] 張乃家,「應用狀態觀測器於模態參數識別之研究」,碩士論文,國立成功大學,台南 (2009)
    [32] 蔡政銓,「模型預測控制於線性馬達驅動平行式雙倒單擺之應用」,碩士論文,國立成功大學,台南 (2006)
    [33] 湯惟宇,「具備線上參數鑑別和離線自動靜摩擦鑑別功能的馬達自調式控制器之研發」,碩士論文,國立成功大學,台南 (2009)
    [34] 任才俊,「以模糊類神經網路為基礎之兩輪行動載具運動控制之研究」,博士論文,國立成功大學,台南,(2007)
    [35] 詹志元,「以動態模型為基礎之雙輪機械人之運動控制系統開發」,碩士論文,國立台灣科技大學,台北 (2009)
    [36] 許信紀,「估測動態模型參數於即時更新雙輪機械人控制增益之研究」,碩士論文,國立台灣科技大學,台北 (2010)
    [37] 李慧恩,「自主式移動機器人之目標追蹤」,碩士論文,國立台灣科技大學,台北 (2010)

    QR CODE