簡易檢索 / 詳目顯示

研究生: 王迪诺
Dino Caesaron
論文名稱: 立體環境中直接和間接互動的距離估計和空間感知研究
A Study on Distance Estimation and Spatial Perception of Direct and Indirect Interactions in Stereoscopic Environments
指導教授: 林久翔
Chiuhsiang Joe Lin
口試委員: 江行全
Bernard C. Jiang
曹譽鐘
Yu-Chung Tsao
孫天龍
Tien-Lung Sun
石裕川
Yuh-Chuan Shih
林久翔
Chiuhsiang Joe Lin
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 89
中文關鍵詞: 立體投影顯示以自我為中心的距離精度空間感知虛擬環境直接互動技術間接互動技術
外文關鍵詞: Stereoscopic projection-based display, Egocentric distance accuracy, Space perception, Virtual environment, Direct interaction technique, Indirect interaction technique
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 準確的距離感知和判斷在日常生活中至關重要。人類的空間行為取決於正確感知的距離,並且許多任務要求個人能夠足夠準確地感知物體的位置以能夠進行交互。實際環境中的許多應用程序都使用精確距離感知的概念作為其原理的基礎。此外,此概念已用於特定培訓中,該培訓用於使用戶在現實世界中完成任務之前做好準備。時至今日,虛擬現實已被廣泛用於處理此培訓,其中虛擬現實允許開發在現實世界中可能創建成本過高或危險的場景,例如,模擬空域飛行器或軍事戰爭。隨著虛擬現實應用程序的最新發展已經達到了人類與三維物體交互的階段,與三維物體交互時用戶的性能成為重要的問題。此外,當前虛擬現實研究的基本信念是,這將導致更有效的人機界面。本文根據用戶與三維物體的交互方式提出了一種用戶交互技術。直接互動和間接互動技術。此外,儘管有很多潛在的應用可以從虛擬現實中受益,但我們對虛擬現實中幾個基本的感知和認知任務的理解-距離估計,具有直接和間接交互作用的空間/空間感知尚未得到很好的發展。為了提供對虛擬現實研究理論和實踐的見識,本研究尋求就基於立體投影的顯示器中的距離估計建立兩種用戶交互技術的特徵。
    招募了十四名參與者,以三種交互技術(在深度/自我中心平面上顯示的目標)和三個難度指標來執行兩種交互技術的獲取任務。對於每種交互技術,都分析了以自我為中心的距離估計,任務完成時間,吞吐量和空間感知的準確性。結果表明,間接光標技術比直接光標技術更為準確。另一方面,與間接光標相比,在直接指向技術中觀察到更高的吞吐量。但是,兩種交互技術在任務完成時間上沒有顯著差異。結果還表明,在最大距離(距參與者150厘米)處,精度比90厘米和120厘米的較近距離更高。此外,任務的難度也極大地影響了準確性,最高難度級別比中等和低難度條件遭受的影響更大。在直接指向過程中,估計趨向於收斂到虛擬空間的中心。但是,在間接光標條件下未觀察到這種收斂。指向估計的準確性在參與者的左側受到影響。這項研究的結果有助於理解立體環境中的用戶交互技術。此外,虛擬環境的開發人員可以在設計有效的用戶交互時參考這些發現,尤其是其性能依賴於準確性。


    Accurate distance perception and judgment are essential in daily life. Human spatial behavior depends on correctly perceived distances, and many tasks require an individual to be able to perceive the location of an object accurately enough to be able to interact with. Many applications in the real environment use a concept of accurate distance perception as a base of their principles. Moreover, this concept has been used in such particular training that is used to prepare a user before their tasks in the real world. To this day, virtual reality has been widely used to handle this training, where virtual reality allows for the development of scenarios that could be too costly or dangerous to create in the real world, for example, simulating an airspace craft or military war. As the recent development of virtual reality applications has reached the stage of human interaction with three-dimensional objects, a performance of a user when interacting with the three-dimensional objects becoming an important issue. Moreover, the underlying belief of current virtual reality research is that this will lead to more effective human-machine interfaces. In this dissertation, we proposed a term of user interaction technique depending on how the user interacting with the three-dimensional objects; direct interaction and indirect interaction techniques. Moreover, while there are many potential applications that could benefit from virtual reality, our understanding of several basic perceptual and cognitive tasks in Virtual Environments – distance estimation, space/spatial perception with direct and indirect interactions is not yet well developed. In an effort to provide an insight for virtual reality research theory and practice, this study sought to establish characteristics of the two user interaction techniques, with respect to the distance estimation in the stereoscopic projection-based display.
    Fourteen participants were recruited to perform an acquisition task in both interaction techniques, at three levels of parallaxes (target displayed in-depth/egocentric distance) and three indices of difficulty. Accuracy of egocentric distance estimation, task completion time, throughput, and perception of space were analyzed for each interaction technique. The results show that the indirect cursor technique was found to be more accurate (estimations are close to the reference targets position) than the direct pointing one. On the other hand, a higher throughput was observed in the direct pointing technique compared to the indirect cursor. However, there were no significant differences in task completion time between the two interaction techniques. The result also shows that accuracy was higher at the greatest distance (150 cm from the participant) than the closer distances of 90 cm and 120 cm. Furthermore, the difficulty of the task also significantly influenced the accuracy, with the highest difficulty level suffered more than the medium and the low levels of difficulty conditions. During the direct pointing, estimations tend to converge to the center of virtual space; however, this convergence was not observed in the indirect cursor condition. The pointing estimations accuracy suffered on the left side of the participants. The findings of this study contribute to the understanding of user interaction techniques in a stereoscopic environment. Furthermore, developers of the virtual environment may refer to these findings in designing effective user interactions, especially of which performance relies on accuracy.

    Abstract v Acknowledgements vii List of Tables x List of Figures xi List of Equations xii CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Study Motivation 4 1.3 Study Framework 4 1.4 Scope and Limitation of the Study 7 CHAPTER 2 PERCEPTUAL EVALUATION AND INTERACTION IN VIRTUAL REALITY 8 2.1 Introduction 8 2.2 Practical applications of VR 10 2.3 Benefits of VEs 11 2.4 Problems of VEs 11 2.5 Perception and estimation of distances 13 2.6 Distance/depth cues 14 2.7 Reporting perceived distance 15 2.8 Distance estimation in VE 16 2.8.1 Egocentric distance estimation 17 2.8.2 Exocentric distance estimation 19 2.9 Reasons for inaccurate distance estimation in VEs 20 2.9.1 Type of display 20 2.9.2 Surrounding (environment) context 21 2.9.3 Quality of graphics (rendering) 21 2.9.4 Avatar (feedback and scaling cues) 22 2.10 Direct vs. indirect interaction methods 23 2.10.1 Direct interaction with virtual objects 24 2.10.2 Indirect interaction with virtual objects 25 CHAPTER 3 EXPERIMENTAL DESIGN AND METHOD 28 3.1 Participants 28 3.2 Experimental variables 28 3.2.1 Independent variables 28 3.2.2 Dependent variables 32 3.3 Experimental task and settings 33 3.4 Apparatus and Materials 34 3.5 Procedure 36 CHAPTER 4 RESULTS 37 4.1 Accuracy of egocentric distance 37 4.2 Task completion time and throughput 41 4.3 Perception of space in frontal view 45 CHAPTER 5 DISCUSSION 48 5.1 Effect of the interaction technique 48 5.1.1 Visual conflicts in the direct pointing technique 48 5.1.2 Distance/depth cues in the indirect cursor technique 49 5.1.3 Two representations of visual space 49 5.1.4 Perception of frontal view 52 5.2 Effect of the parallax (egocentric distance) 54 5.3 Effect of the index of difficulty (ID) 54 CHAPTER 6 CONCLUSION AND FUTURE DIRECTIONS 56 6.1 Research contributions 56 6.2 Future directions 57 REFERENCES 58 APPENDIX A – Personal information of participants 66 APPENDIX B – Experiment condition 67 APPENDIX C – Participant consent form 68 APPENDIX D – Description of apparatus 70 APPENDIX E – Complete Analysis of Variance (ANOVA) 72

    Alessio, M., & Paul, M. S. (2009). Estimation of Distances in Virtual Environments Using Size Constancy. International Journal of Virtual Reality, 8(1). doi:10.20870/IJVR.2009.8.1.2714
    Andre, J., & Rogers, S. (2006). Using verbal and blind-walking distance estimates to investigate the two visual systems hypothesis. Perception & Psychophysics, 68(3), 353-361. doi:10.3758/BF03193682
    Argelaguet, F., & Andujar, C. (2013). A survey of 3D object selection techniques for virtual environments. Computers & Graphics, 37(3), 121-136. doi:https://doi.org/10.1016/j.cag.2012.12.003
    Armbrüster, C., Wolter, M., Kuhlen, T., Spijkers, W., & Fimm, B. (2008). Depth Perception in Virtual Reality: Distance Estimations in Peri- and Extrapersonal Space. CyberPsychology & Behavior, 11(1), 9-15. doi:10.1089/cpb.2007.9935
    Aznar-Casanova, J. A., Matsushima, E. H., Ribeiro-Filho, N. P., & Da Silva, J. A. (2014). One-Dimensional and Multi-Dimensional Studies of the Exocentric Distance Estimates in Frontoparallel Plane, Virtual Space, and Outdoor Open Field. The Spanish Journal of Psychology, 9(2), 273-284. doi:10.1017/S113874160000617X
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoper. Virtual Environ., 6(4), 355-385. doi:10.1162/pres.1997.6.4.355
    Bérard, F., Ip, J., Benovoy, M., El-Shimy, D., Blum, J. R., & Cooperstock, J. R. (2009). Did “Minority Report” Get It Wrong? Superiority of the Mouse over 3D Input Devices in a 3D Placement Task, Berlin, Heidelberg.
    Bertolini, G., & Straumann, D. (2016). Moving in a Moving World: A Review on Vestibular Motion Sickness. Frontiers in neurology, 7(14). doi:10.3389/fneur.2016.00014
    Bingham, G. P., Zaal, F., Robin, D., & Shull, J. A. (2000). Distortions in definite distance and shape perception as measured by reaching without and with haptic feedback. Journal of Experimental Psychology: Human Perception and Performance, 26(4), 1436-1460. doi:10.1037/0096-1523.26.4.1436
    Bridgeman, B., Gemmer, A., Forsman, T., & Huemer, V. (2000). Processing spatial information in the sensorimotor branch of the visual system. Vision Research, 40(25), 3539-3552. doi:https://doi.org/10.1016/S0042-6989(00)00193-0
    Bruder, G., Sanz, F. A., Olivier, A. H., & Lecuyer, A. (2015). Distance estimation in large immersive projection systems, revisited. Paper presented at the IEEE Virtual Reality (VR).
    Bruder, G., Steinicke, F., & Stuerzlinger, W. (2013). Touching the Void Revisited: Analyses of Touch Behavior on and above Tabletop Surfaces. Paper presented at the the 14th IFIP Conference on Human-Computer Interaction, Berlin, Heidelberg.
    Bruder, G., Steinicke, F., & Sturzlinger, W. (2013). Effects of visual conflicts on 3D selection task performance in stereoscopic display environments. Paper presented at the IEEE Symposium on 3D User Interfaces (3DUI).
    Bruder, G., Steinicke, F., & Sturzlinger, W. (2013). To touch or not to touch?: comparing 2D touch and 3D mid-air interaction on stereoscopic tabletop surfaces. Paper presented at the the 1st symposium on Spatial user interaction, Los Angeles, California, USA.
    Burno, R. A., Wu, B., Doherty, R., Colett, H., & Elnaggar, R. (2015). Applying Fitts’ Law to Gesture Based Computer Interactions. Procedia Manufacturing, 3, 4342-4349. doi:https://doi.org/10.1016/j.promfg.2015.07.429
    Caesaron, D. (2012). Perceptual matching distance estimation within peripersonal space in real and virtual environments. (Master), National Taiwan University of Science and Technology, Taiwan.
    Chan, L.-W., Kao, H.-S., Chen, M. Y., Lee, M.-S., Hsu, J., & Hung, Y.-P. (2010). Touching the void: direct-touch interaction for intangible displays. Paper presented at the the SIGCHI Conference on Human Factors in Computing Systems, Atlanta, Georgia, USA.
    Craig, A., Sherman, W. R., & Will, J. D. (2009). Developing Virtual Reality Applications: Foundations of Effective Design: Morgan Kaufmann Publishers Inc.
    Creem-Regehr, S. H., Willemsen, P., Gooch, A. A., & Thompson, W. B. (2005). The influence of restricted viewing conditions on egocentric distance perception: implications for real and virtual indoor environments. Perception, 34(2), 191-204. doi:10.1068/p5144
    Cutting, J. E., & Vishton, P. M. (1995). Chapter 3 - Perceiving Layout and Knowing Distances: The Integration, Relative Potency, and Contextual Use of Different Information about Depth*. In W. Epstein & S. Rogers (Eds.), Perception of Space and Motion (pp. 69-117). San Diego: Academic Press.
    Darken, R. P., & Sibert, J. L. (1996). Navigating large virtual spaces. Int. J. Hum.-Comput. Interact., 8(1), 49-71. doi:10.1080/10447319609526140
    de Boer, I. R., Wesselink, P. R., & Vervoorn, J. M. (2016). Student performance and appreciation using 3D vs. 2D vision in a virtual learning environment. European Journal of Dental Education, 20(3), 142-147. doi:10.1111/eje.12152
    Deng, C.-L., Geng, P., Hu, Y.-F., & Kuai, S.-G. (2019). Beyond Fitts’s Law: A Three-Phase Model Predicts Movement Time to Position an Object in an Immersive 3D Virtual Environment. Human Factors, 61(6), 879-894. doi:10.1177/0018720819831517
    Dey, A., Cunningham, A., & Sandor, C. (2010, 20-21 March 2010). Evaluating depth perception of photorealistic mixed reality visualizations for occluded objects in outdoor environments. Paper presented at the 2010 IEEE Symposium on 3D User Interfaces (3DUI).
    Draper, M. H., Viirre, E. S., Furness, T. A., & Gawron, V. J. (2001). Effects of Image Scale and System Time Delay on Simulator Sickness within Head-Coupled Virtual Environments. Human Factors, 43(1), 129-146. doi:10.1518/001872001775992552
    Drascic, D., & Milgram, P. (1996). Perceptual issues in augmented reality (Vol. 2653): SPIE.
    Ehrlich, J. A., Singer, M. J., & Allen, R. C. (1998). Relationships between Head-Shoulder Divergences and Sickness in a Virtual Environment. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 42(21), 1471-1475. doi:10.1177/154193129804202102
    Fitts, P. M. (1992). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology: General, 121(3), 262-269. doi:10.1037/0096-3445.121.3.262
    Geuss, M., Allen, G., Stefanucci, J., Creem-Regehr, S., & Thompson, W. (2011). The role of depth and frontal planes in perceiving distances in a virtual environment. Journal of Vision, 11, 75-75. doi:10.1167/11.11.75
    Geuss, M. N., Stefanucci, J. K., Creem-Regehr, S. H., & Thompson, W. B. (2012). Effect of viewing plane on perceived distances in real and virtual environments. J Exp Psychol Hum Percept Perform, 38(5), 1242-1253. doi:10.1037/a0027524
    Gilinsky, A. S. (1951). Perceived size and distance in visual space. Psychological Review, 58(6), 460-482. doi:10.1037/h0061505
    Henry, D., & Furness, T. (1993, 18-22 Sept. 1993). Spatial perception in virtual environments: Evaluating an architectural application. Paper presented at the Proceedings of IEEE Virtual Reality Annual International Symposium.
    Hoffman, D. M., Girshick, A. R., Akeley, K., & Banks, M. S. (2008). Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision, 8(3), 33-33. doi:10.1167/8.3.33
    Hutchins, E. L., Hollan, J. D., & Norman, D. A. (1985). Direct manipulation interfaces. Hum.-Comput. Interact., 1(4), 311-338. doi:10.1207/s15327051hci0104_2
    Interrante, V., Ries, B., & Anderson, L. (2006, 25-29 March 2006). Distance Perception in Immersive Virtual Environments, Revisited. Paper presented at the IEEE Virtual Reality Conference (VR 2006).
    Interrante, V., Ries, B., Lindquist, J., Kaeding, M., & Anderson, L. (2008). Elucidating Factors that Can Facilitate Veridical Spatial Perception in Immersive Virtual Environments. Presence: Teleoperators and Virtual Environments, 17(2), 176-198. doi:10.1162/pres.17.2.176
    Iosa, M., Fusco, A., Morone, G., & Paolucci, S. (2012). Walking there: Environmental influence on walking-distance estimation. Behavioural Brain Research, 226(1), 124-132. doi:https://doi.org/10.1016/j.bbr.2011.09.007
    ISO. (2000). Reference Number: ISO 9241-9: Ergonomic requirements for office work with visual display terminals (VDTs)-Part 9-Requirements for non-keyboard input devices(Vol. February 15, 2000), 57. Retrieved from doi:10.3403/BSENISO9241
    Jerald, J. (2016). The VR Book: Human-Centered Design for Virtual Reality: Association for Computing Machinery and Morgan; Claypool.
    Johnson, D. M., & Stewart, J. E. (1999). Use of Virtual Environments for the Acquisition of Spatial Knowledge: Comparison Among Different Visual Displays. Military Psychology, 11(2), 129-148. doi:10.1207/s15327876mp1102_1
    Jones, J. A., J. E. Swan, I., & Bolas, M. (2013). Peripheral Stimulation and its Effect on Perceived Spatial Scale in Virtual Environments. IEEE Transactions on Visualization and Computer Graphics, 19(4), 701-710. doi:10.1109/TVCG.2013.37
    Jones, J. A., J. Edward Swan, I., Singh, G., & Ellis, S. R. (2011). Peripheral visual information and its effect on distance judgments in virtual and augmented environments. Paper presented at the Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization, Toulouse, France.
    K. Lemmerman, D., & J. LaViola Jr, J. (2007). Effects of Interaction-Display Offset on User Performance in Surround Screen Virtual Environments.
    Kawamura, S., & Kijima, R. (2016, 19-23 March 2016). Effect of head mounted display latency on human stability during quiescent standing on one foot. Paper presented at the 2016 IEEE Virtual Reality (VR).
    Kelly, J. W., Hammel, W., Sjolund, L. A., & Siegel, Z. D. (2015). Frontal extents in virtual environments are not immune to underperception. Attention, Perception, & Psychophysics, 77(6), 1848-1853. doi:10.3758/s13414-015-0948-8
    Kelly, J. W., Loomis, J. M., & Beall, A. C. (2004). Judgments of Exocentric Direction in Large-Scale Space. Perception, 33(4), 443-454. doi:10.1068/p5218
    Kim, G. (2005). Designing Virtual Reality Systems: The Structured Approach: Springer-Verlag.
    Klein, E., Swan, J. E., Schmidt, G. S., Livingston, M. A., & Staadt, O. G. (2009). Measurement Protocols for Medium-Field Distance Perception in Large-Screen Immersive Displays. Paper presented at the Proceedings of the 2009 IEEE Virtual Reality Conference.
    Knapp, J. M., & Loomis, J. M. (2004). Limited field of view of head-mounted displays is not the cause of distance underestimation in virtual environments. Presence: Teleoper. Virtual Environ., 13(5), 572-577. doi:10.1162/1054746042545238
    Kuhl, S., Thompson, W., & Creem-Regehr, S. (2008). HMD calibration and its effects on distance judgments.
    Kunz, B. R., Wouters, L., Smith, D., Thompson, W. B., & Creem-Regehr, S. H. (2009). Revisiting the effect of quality of graphics on distance judgments in virtual environments: A comparison of verbal reports and blind walking. Attention, Perception, & Psychophysics, 71(6), 1284-1293. doi:10.3758/app.71.6.1284
    Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., & Gross, M. (2010). Nonlinear disparity mapping for stereoscopic 3D. ACM Trans. Graph., 29(4), 1-10. doi:10.1145/1778765.1778812
    Lappin, J. S., Shelton, A. L., & Rieser, J. J. (2006). Environmental context influences visually perceived distance. Perception & Psychophysics, 68(4), 571-581. doi:10.3758/bf03208759
    Lee, A. (2005). Flight Simulation: Virtual Environments in Aviation.
    Lehmann, N., & Szatkowski, J. (2004). Theatrical Virtuality — Virtual Theatricality. In P. Andersen & L. Qvortrup (Eds.), Virtual Applications: Applications with Virtual Inhabited 3D Worlds (pp. 49-88). London: Springer London.
    Leyrer, M., Linkenauger, S. A., B, H. H., #252, lthoff, Kloos, U., & Mohler, B. (2011). The influence of eye height and avatars on egocentric distance estimates in immersive virtual environments. Paper presented at the Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization, Toulouse, France.
    Li, Z., Phillips, J., & Durgin, F. H. (2011). The underestimation of egocentric distance: evidence from frontal matching tasks. Atten Percept Psychophys, 73(7), 2205-2217. doi:10.3758/s13414-011-0170-2
    Lin, C. J., Abreham, B. T., & Woldegiorgis, B. H. (2019). Effects of displays on a direct reaching task: A comparative study of head mounted display and stereoscopic widescreen display. International Journal of Industrial Ergonomics, 72, 372-379. doi:https://doi.org/10.1016/j.ergon.2019.06.013
    Lin, C. J., Caesaron, D., & Woldegiorgis, B. H. (2019). The Effects of Augmented Reality Interaction Techniques on Egocentric Distance Estimation Accuracy. Applied Sciences, 9(21), 4652.
    Lin, C. J., Ho, S.-H., & Chen, Y.-J. (2015). An investigation of pointing postures in a 3D stereoscopic environment. Applied Ergonomics, 48, 154-163. doi:https://doi.org/10.1016/j.apergo.2014.12.001
    Lin, C. J., & Widyaningrum, R. (2016). Eye Pointing in Stereoscopic Displays. Journal of Eye Movement Research, 9(5). doi:10.16910/jemr.9.5.4
    Lin, C. J., & Woldegiorgis, B. H. (2015). Interaction and visual performance in stereoscopic displays: A review. Journal of the Society for Information Display, 23(7), 319-332. doi:10.1002/jsid.378
    Lin, C. J., & Woldegiorgis, B. H. (2017). Egocentric distance perception and performance of direct pointing in stereoscopic displays. Applied Ergonomics, 64(Supplement C), 66-74. doi:https://doi.org/10.1016/j.apergo.2017.05.007
    Lin, C. J., Woldegiorgis, B. H., & Caesaron, D. (2014). Distance estimation of near-field visual objects in stereoscopic displays. Journal of the Society for Information Display, 22(7), 370-379. doi:10.1002/jsid.269
    Lin, J., Harris-Adamson, C., & Rempel, D. (2019). The Design of Hand Gestures for Selecting Virtual Objects. International Journal of Human–Computer Interaction, 1-7. doi:10.1080/10447318.2019.1571783
    Lin, Q., Xie, X., Erdemir, A., Narasimham, G., McNamara, T. P., Rieser, J., & Bodenheimer, B. (2011). Egocentric distance perception in real and HMD-based virtual environments: the effect of limited scanning method. Paper presented at the Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization, Toulouse, France.
    Loomis, J., & Knapp, J. (2003). Visual perception of egocentric distance in real and virtual environments. In Virtual and adaptive environments: Applications, implications, and human performance issues. (pp. 21-46). Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers.
    Loomis, J. M., & Philbeck, J. W. (2008). Measuring spatial perception with spatial updating and action. In R. L. Klatzky, B. MacWhinney, & M. Behrmann (Eds.), Embodiment, Ego-Space, and Action (pp. 1-43). New York: Taylor & Francis, Psychology Press.
    Loomis, J. M., Silva, J., xe, Da, A., Philbeck, J. W., & Fukusima, S. S. (1996). Visual Perception of Location and Distance. Current Directions in Psychological Science, 5(3), 72-77.
    Lubos, P., Bruder, G., & Steinicke, F. (2014). Analysis of direct selection in head-mounted display environments. Paper presented at the IEEE Symposium on 3D User Interfaces (3DUI).
    McIntire, J. P., Havig, P. R., & Geiselman, E. E. (2014). Stereoscopic 3D displays and human performance: A comprehensive review. Displays, 35(1), 18-26. doi:10.1016/j.displa.2013.10.004
    Messing, R., & Durgin, F. H. (2005). Distance Perception and the Visual Horizon in Head-Mounted Displays. ACM Trans. Appl. Percept., 2(3), 234-250. doi:10.1145/1077399.1077403
    Mine, M. R. (1995). Virtual Environment Interaction Techniques. Retrieved from
    Mine, M. R., Frederick P. Brooks, J., & Sequin, C. H. (1997). Moving objects in space: exploiting proprioception in virtual-environment interaction. Paper presented at the the 24th annual conference on Computer graphics and interactive techniques.
    Mittelstaedt, J., Wacker, J., & Stelling, D. (2018). Effects of display type and motion control on cybersickness in a virtual bike simulator. Displays, 51, 43-50. doi:https://doi.org/10.1016/j.displa.2018.01.002
    Mohler, B. J., B, H. H., #252, lthoff, Thompson, W. B., & Creem-Regehr, S. H. (2008). A full-body avatar improves egocentric distance judgments in an immersive virtual environment. Paper presented at the Proceedings of the 5th symposium on Applied perception in graphics and visualization, Los Angeles, California.
    Mohler, B. J., Creem-Regehr, S. H., Thompson, W. B., & Bülthoff, H. H. (2010). The Effect of Viewing a Self-Avatar on Distance Judgments in an HMD-Based Virtual Environment. Presence, 19(3), 230-242. doi:10.1162/pres.19.3.230
    Naceri, D., Chellali, R., Dionnet, F., & Toma, S. (2010). Depth Perception Within Virtual Environments: Comparison Between two Display Technologies. International Journal on Advances in Intelligent Systems, 3, 51-64.
    Napieralski, P. E., Altenhoff, B. M., Bertrand, J. W., Long, L. O., Babu, S. V., Pagano, C. C., . . . Davis, T. A. (2011). Near-field distance perception in real and virtual environments using both verbal and action responses. ACM Trans. Appl. Percept., 8(3), 1-19. doi:10.1145/2010325.2010328
    Palmisano, S., Mursic, R., & Kim, J. (2017). Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays, 46, 1-8. doi:https://doi.org/10.1016/j.displa.2016.11.001
    Park, K. S., Hong, G. B., & Lee, S. (2012). Fatigue problems in remote pointing and the use of an upper-arm support. International Journal of Industrial Ergonomics, 42(3), 293-303.
    Parks, T. E. (2012). Visual-illusion distance paradoxes: A resolution. Attention, Perception, & Psychophysics, 74(8), 1568-1569. doi:10.3758/s13414-012-0374-0
    Pausch, R., Snoddy, J., Taylor, R., Watson, S., & Haseltine, E. (1996). Disney's Aladdin: first steps toward storytelling in virtual reality. Paper presented at the Proceedings of the 23rd annual conference on Computer graphics and interactive techniques.
    Phillips, L., Ries, B., Interrante, V., Kaeding, M., & Anderson, L. (2009). Distance perception in NPR immersive virtual environments, revisited. Paper presented at the Proceedings of the 6th Symposium on Applied Perception in Graphics and Visualization, Chania, Crete, Greece.
    Phillips, L., Ries, B., Kaeding, M., & Interrante, V. (2010, 20-24 March 2010). Avatar self-embodiment enhances distance perception accuracy in non-photorealistic immersive virtual environments. Paper presented at the 2010 IEEE Virtual Reality Conference (VR).
    Plumert, J. M., Kearney, J. K., Cremer, J. F., & Recker, K. (2005). Distance perception in real and virtual environments. ACM Trans. Appl. Percept., 2(3), 216-233. doi:10.1145/1077399.1077402
    Poupyrev, I., & Ichikawa, T. (1999). Manipulating Objects in Virtual Worlds: Categorization and Empirical Evaluation of Interaction Techniques. Journal of Visual Languages & Computing, 10(1), 19-35. doi:http://dx.doi.org/10.1006/jvlc.1998.0112
    Poupyrev, I., Weghorst, S., & Fels, S. (2000). Non-isomorphic 3D rotational techniques. Paper presented at the the SIGCHI conference on Human Factors in Computing Systems, The Hague, The Netherlands.
    Renner, R. S., Velichkovsky, B. M., & Helmert, J. R. (2013). The perception of egocentric distances in virtual environments - A review. ACM Comput. Surv., 46(2), 1-40. doi:10.1145/2543581.2543590
    Richardson, A. R., & Waller, D. (2005). The effect of feedback training on distance estimation in virtual environments. Applied Cognitive Psychology, 19(8), 1089-1108. doi:10.1002/acp.1140
    Rolland, J. P., Gibson, W., & Ariely, D. (1995). Towards quantifying depth and size perception in virtual environments. Presence: Teleoper. Virtual Environ., 4(1), 24-49. doi:10.1162/pres.1995.4.1.24
    Sahm, C. S., Creem-Regehr, S. H., Thompson, W. B., & Willemsen, P. (2005). Throwing versus walking as indicators of distance perception in similar real and virtual environments. ACM Trans. Appl. Percept., 2(1), 35-45. doi:10.1145/1048687.1048690
    Seigle, D. (2009). Dimensionalization. Veritas et Visus, 69-75.
    Sharples, S., Cobb, S., Moody, A., & Wilson, J. R. (2008). Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays, 29(2), 58-69. doi:https://doi.org/10.1016/j.displa.2007.09.005
    Shen, Y., Ong, S. K., & Nee, A. Y. C. (2011). Vision-Based Hand Interaction in Augmented Reality Environment. International Journal of Human–Computer Interaction, 27(6), 523-544. doi:10.1080/10447318.2011.555297
    Sherman, W. R., & Craig, A. B. (2003). Understanding Virtual Reality: Interface, Application, and Design: Morgan Kaufmann Publishers Inc.
    Smith, R., Day, A., Rockall, T., Ballard, K., Bailey, M., & Jourdan, I. (2012). Advanced stereoscopic projection technology significantly improves novice performance of minimally invasive surgical skills. Surgical Endoscopy, 26(6), 1522-1527. doi:10.1007/s00464-011-2080-8
    Steinicke, F., Bruder, G., Hinrichs, K., Lappe, M., Ries, B., & Interrante, V. (2009). Transitional environments enhance distance perception in immersive virtual reality systems. Paper presented at the Proceedings of the 6th Symposium on Applied Perception in Graphics and Visualization, Chania, Crete, Greece.
    Sugovic, M., Turk, P., & Witt, J. K. (2016). Perceived distance and obesity: It's what you weigh, not what you think. Acta Psychol (Amst), 165, 1-8. doi:10.1016/j.actpsy.2016.01.012
    Sun, H.-M., Li, S.-P., Zhu, Y.-Q., & Hsiao, B. (2015). The effect of user's perceived presence and promotion focus on usability for interacting in virtual environments. Applied Ergonomics, 50, 126-132. doi:https://doi.org/10.1016/j.apergo.2015.03.006
    Swan, J. E., Jones, A., Kolstad, E., Livingston, M. A., & Smallman, H. S. (2007). Egocentric depth judgments in optical, see-through augmented reality. IEEE Transactions on Visualization and Computer Graphics, 13(3), 429-442. doi:10.1109/TVCG.2007.1035
    Swan, J. E., Livingston, M. A., Smallman, H. S., Brown, D., Baillot, Y., Gabbard, J. L., & Hix, D. (2006, 25-29 March 2006). A Perceptual Matching Technique for Depth Judgments in Optical, See-Through Augmented Reality. Paper presented at the IEEE Virtual Reality Conference (VR 2006).
    Swan, J. E., Singh, G., & Ellis, S. R. (2015). Matching and Reaching Depth Judgments with Real and Augmented Reality Targets. IEEE Transactions on Visualization and Computer Graphics, 21(11), 1289-1298. doi:10.1109/TVCG.2015.2459895
    Takahashi, K., Meilinger, T., Watanabe, K., & Bülthoff, H. H. (2013). Psychological influences on distance estimation in a virtual reality environment. Frontiers in Human Neuroscience, 7, 580. doi:10.3389/fnhum.2013.00580
    Thompson, W., Fleming, R., Creem-Regehr, S., & Stefanucci, J. K. (2011). Visual Perception from a Computer Graphics Perspective: A. K. Peters, Ltd.
    Thompson, W. B., Willemsen, P., Gooch, A. A., Creem-Regehr, S. H., Loomis, J. M., & Beall, A. C. (2004). Does the Quality of the Computer Graphics Matter when Judging Distances in Visually Immersive Environments? Presence: Teleoperators and Virtual Environments, 13(5), 560-571. doi:10.1162/1054746042545292
    Ukai, K., & Howarth, P. A. (2008). Visual fatigue caused by viewing stereoscopic motion images: Background, theories, and observations. Displays, 29(2), 106-116. doi:https://doi.org/10.1016/j.displa.2007.09.004
    van Dam, L. C. J., & Stephens, J. R. (2018). Effects of prolonged exposure to feedback delay on the qualitative subjective experience of virtual reality. PLOS ONE, 13(10), e0205145. doi:10.1371/journal.pone.0205145
    Waller, D. (1999). Factors Affecting the Perception of Interobject Distances in Virtual Environments. Presence, 8(6), 657-670. doi:10.1162/105474699566549
    Waller, D., & Richardson, A. R. (2008). Correcting distance estimates by interacting with immersive virtual environments: Effects of task and available sensory information. Journal of Experimental Psychology: Applied, 14(1), 61-72.
    Wang, Y., & MacKenzie, C. (1999). Effects of orientation disparity between haptic and graphic displays of objects in virtual environments. Paper presented at the IFIP Conference on Human-Computer Interaction.
    Wartenberg, C., & Wiborg, P. (2003). Precision of Exocentric Distance Judgments in Desktop and Cube Presentation. Presence, 12(2), 196-206. doi:10.1162/105474603321640941
    Werkhoven, P. J., & Groen, J. (1998). Manipulation Performance in Interactive Virtual Environments. Human Factors, 40(3), 432-442. doi:10.1518/001872098779591322
    Wickens, C. D., & Hollands, J. G. (2000). Engineering psychology and human performance (Third ed.). Upper Saddle River, NJ: Prentice Hall.
    Wickens, C. D., & Baker, P. (1995). Cognitive issues in virtual reality. In Virtual environments and advanced interface design. (pp. 514-541). New York, NY, US: Oxford University Press.
    Willemsen, P., Colton, M. B., Creem-Regehr, S. H., & Thompson, W. B. (2004). The effects of head-mounted display mechanics on distance judgments in virtual environments. Paper presented at the Proceedings of the 1st Symposium on Applied perception in graphics and visualization, Los Angeles, California, USA.
    Willemsen, P., Gooch, A. A., Thompson, W. B., & Creem-Regehr, S. H. (2008). Effects of Stereo Viewing Conditions on Distance Perception in Virtual Environments. Presence, 17(1), 91-101. doi:10.1162/pres.17.1.91
    Witmer, B. G., & Sadowski, W. J. (1998). Nonvisually Guided Locomotion to a Previously Viewed Target in Real and Virtual Environments. Human Factors, 40(3), 478-488. doi:10.1518/001872098779591340
    Witt, J. K., Linkenauger, S. A., & Wickens, C. (2016). Action-specific effects in perception and their potential applications. Journal of Applied Research in Memory and Cognition, 5(1), 69-76. doi:https://doi.org/10.1016/j.jarmac.2015.07.008
    Witt, J. K., Stefanucci, J. K., Riener, C. R., & Proffitt, D. R. (2007). Seeing beyond the target: environmental context affects distance perception. Perception, 36(12), 1752-1768. doi:10.1068/p5617
    Woldegiorgis, B. H., & Lin, C. J. (2017). The accuracy of distance perception in the frontal plane of projection‐based stereoscopic environments. Journal of the Society for Information Display, 25(12), 701-711. doi:10.1002/jsid.618
    Wu, B., Ooi, T. L., & He, Z. J. (2004). Perceiving distance accurately by a directional process of integrating ground information. Nature, 428(6978), 73-77. doi:10.1038/nature02350
    Yamamoto, N. (2018). Distance Perception. In J. S. Kreutzer, J. DeLuca, & B. Caplan (Eds.), Encyclopedia of Clinical Neuropsychology (pp. 1198-1202). Cham: Springer International Publishing.
    Zhang, R., Nordman, A., Walker, J., & Kuhl, S. A. (2012). Minification affects verbal- and action-based distance judgments differently in head-mounted displays. ACM Trans. Appl. Percept., 9(3), 1-13. doi:10.1145/2325722.2325727
    Ziemer, C. J., Plumert, J. M., Cremer, J. F., & Kearney, J. K. (2009). Estimating distance in real and virtual environments: Does order make a difference? Atten Percept Psychophys, 71(5), 1095-1106. doi:10.3758/APP.71.5.1096

    無法下載圖示 全文公開日期 2025/01/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE