簡易檢索 / 詳目顯示

研究生: 陳詩捷
Shih-Chieh Chen
論文名稱: 虛擬環境中之視覺尋路輔助設計研究
A Study on Wedge Design as a Visual Wayfinding Facilitator in a Virtual Environment
指導教授: 陳建雄
Chien-Hsiung Chen
口試委員: 李傳房
none
吳志富
none
紀佳芬
none
鄭金典
none
學位類別: 博士
Doctor
系所名稱: 設計學院 - 設計系
Department of Design
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 128
中文關鍵詞: 尋路視覺輔助設計互動模式視角性別虛擬環境
外文關鍵詞: Wayfinding, Visual facilitator design, Interaction mode, Viewing perspective, Gender, Virtual environment
相關次數: 點閱:550下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尋路是每個人都會遇到的問題,由於科技進步,透過智慧型行動裝置即可完成尋路之目的。本研究旨在探討虛擬環境中之視覺輔助設計與互動模式對使用者搜尋績效與主觀偏好的影響,研究變數分別為:互動模式、視覺輔助設計、視角、性別等變數,總共分為三部份研究進行。
    研究一自變數為:互動模式、視角、性別,互動模式分別為觸控操作與體感操作等2個水準,視角為第1人稱視角與第3人稱視角等2個水準,性別則分別為男性與女性等2個水準。研究為2x2x2的組間實驗設計。依變數為:尋路績效、任務流暢度與主觀滿意度偏好,以及SUS及NASA-TLX量表。由Unity程式紀錄操作時間。採用便利抽樣的方式,共招募56位受測者,實驗完成後填寫SUS及NASA-TLX量表。經由三因子變異數分析結果得知:觸控模式操作績效與主觀評量有較好的表現;第1人稱視角操作績效比第3人稱視角操作績效好,但在流暢度與滿意度主觀評量卻是第3人稱視角優於第1人稱視角;而男性操作績效優於女性。
    研究二自變數為:楔形設計、互動模式、視角,楔形設計分別為2D平面設計與3D立體設計等2個水準,互動模式則分別為觸控操作與體感操作等2個水準,視角為第1人稱視角與第3人稱視角等2個水準。研究為2x2x2的組間實驗設計。依變數為:尋路績效與理解程度與辨識程度,以及SUS及NASA-TLX量表。由Unity程式紀錄操作時間。採用便利抽樣的方式,共招募80位受測者,實驗完成後填寫SUS及NASA-TLX量表。經由三因子變異數分析結果得知:2D平面設計操作績效優於3D立體設計,且理解程度與辨識程度在2D平面設計均有較好的表現;在操作績效、理解程度與辨識程度主觀評量第3人稱視角優於第1人稱視角;而SUS得分觸控模式高於體感模式, NASA-TLX心智負荷觸控模式負荷低於體感模式。
    研究三自變數為:互動模式、楔形設計、性別,互動模式則分別為觸控操作與體感操作等2個水準,楔形設計分別為線框設計、50%透明度設計與實心填滿設計等3個水準,性別為男性與女性等2個水準。研究為2x3x2的組間實驗設計。依變數為:時間與形容詞對主觀偏好,以及SUS量表。由Unity程式紀錄操作時間。採用便利抽樣的方式,共招募72位受測者,實驗完成後填寫SUS量表。經由三因子變異數分析結果得知:體感模式操作績效優於觸控模式,且形容詞對調查體感模式偏向有趣的、喜歡的以及生動的;而在SUS得分50%透明度設計優於線框設計;男性操作績效優於女性操作績效。
    根據研究結果,針對在智慧型行動裝置中進行3D虛擬環境中尋路行為時,提出下列建議,當需要較長時間的操作情況下,建議使用體感模式較適合。採用第3人稱的視角設計,其環境的辨識度與視野均較好。另外,楔形視覺指引設計則可採用50%透明度設計,可增加空間內容資訊顯示,容易了解目標物與環境之間相對應的關係。
    本研究目前針對互動模式、視角、楔形視覺指引設計及性別為主要研究變數,然而本研究只探討10吋的螢幕尺寸,但現今智慧型行動裝置的螢幕尺寸多樣,因此未來可再繼續探究不同螢幕尺寸及不同視覺輔助設計對於尋路的效應,另外亦可針對3D虛擬環境中不同的情境設計,以及針對不同的尋路策略進行探討,藉以創造出更適合使用者探索的虛擬環境。


    Wayfinding is a general problem that we may encounter daily. Because of the progress of computing technology, we may achieve wayfinding purpose by using smart mobile devices. The purpose of this study is to investigate the influence of visual wayfinding facilitator design and interaction mode on user wayfinding performance and their subjective preference. The research variables are interaction mode, visual facilitator design, viewing perspective, and gender. The experiment was planned into three stages.
    The research variables adopted for the first stage experiment were interaction mode, viewing perspective, and gender. There were two levels of interaction mode, i.e., touch sensitive and body movement, two levels of viewing perspective, i.e., the first person perspective (1PP) and the third person perspective (3PP), and two levels of gender, i.e., male and female. Therefore, the experiment is a 2x2x2 between-subjects factorial design. The dependent variables were wayfinding performance, task fluency, and subjective preference. A total of 56 participants were invited to take part in the experiment by using convenient sampling method. After the experiment, the participants were required to fill out the questionnaire of System Usability Scale (SUS) and NASA Task Load Index (NASA-TLX). The participants’wayfinding task time was recorded by the software of Unity. The generated results based on the three-way ANOVA indicated that: (1) Participants adopting the 1PP performed better than those using the 3PP in wayfinding tasks. (2) Participants felt better task fluency and had higher subjective preference in using the 3PP than those using the 1PP. (3) Male performed better than the female in wayfinding tasks.
    The research variables used in the second stage experiment were wedge design, interaction mode, and viewing perspective. There were two levels of wedge design, i.e., 2D and 3D, two levels of interaction mode, i.e., touch sensitive and body movement, and two levels of viewing perspective, i.e., the first person perspective (1PP) and the third person perspective (3PP). Therefore, the experiment is a 2x2x2 between-subjects factorial design. The dependent variables were wayfinding performance, degree of comprehension, and degree of discriminability. A total of 80 participants were invited to take part in the experiment by using convenient sampling method. After the experiment, the participants were required to fill out the questionnaire of System Usability Scale (SUS) and NASA Task Load Index (NASA-TLX) as well. The participants’ wayfinding task time was also recorded by the software of Unity. The generated results based on the three-way ANOVA indicated that: (1) Participants adopting the 2D wedge design performed better than those using the 3D wedge design in their wayfinding tasks. They also had better comprehension and discriminability when using the 2D wedge design. (2) Participants adopting the 3PP had better task performance and better comprehension and discriminability than those using the 1PP. (3) The participant had higher SUS score in using the body movement mode than those using the touch sensitive mode. Nonetheless, the touch sensitive mode had lower mental workload in NASA-TLX than the body movement mode.
    The research variables used in the third stage experiment were interaction mode, wedge design, and gender. There were two levels of interaction mode, i.e., touch sensitive and body movement, three levels of wedge design, i.e., line frame, 50% transparent, and nontransparent, two levels of gender, i.e., male and female. Therefore, the experiment is a 2x3x2 between-subjects factorial design. The dependent variables were wayfinding performance, polar adjectives, and subjective preference. A total of 72 participants were invited to take part in the experiment by using convenient sampling method. After the experiment, the participants were required to fill out the questionnaire of System Usability Scale (SUS). The participants’ wayfinding task time was also recorded by the software of Unity. The generated results based on the three-way ANOVA indicated that: (1) Participants adopting the body movement mode performed better than those using the touch sensitive mode in their wayfinding tasks. (2) The adjectives related to the body movement mode were interesting, like, and vivid. (3) The participant using the 50% transparent wedge design had higher SUS score than the line frame type of wedge design. (4) Male performed better than the female in wayfinding tasks.
    Based on the reseaarch results, the following suggestions are proposed regarding conducting wayfinding behavior in a 3D virtual environment with a smart mobile device. That is, the body movement interaction mode is suitable for a longer task operation time. The 3PP allowed participants to have better discriminability and viewing angle pertinent to the environment. In addition, the 50% transparent wedge design could help provide better spatial information visualization to the participant and, by so doing, could enable them to better understand the relative relationship between the target and its environment.
    The primary research variables adopted in this study were interaction mode, viewing perspective, visual facilitator design and gender. The research platform was equipped with 10 inch display. Nonetheless, currently available smart mobile devices have various display sizes. Future research studies may focus on the effects of various display sizes and different visual facilitator designs on user wayfinding performance and preference. In addition, different scenario designs in a 3D virtual environment and different user wayfinding strategies can be further investigated to help create better virtual environments for users to explore.

    中文摘要 ii Abstract v 誌謝 x 一、緒論 1 1.1研究背景與動機 1 1.2研究目的 4 1.3研究範圍與限制 5 1.4研究流程 5 二、文獻探討 7 2.1智慧型行動裝置 9 2.2互動模式 10 2.3楔形視覺指引設計 12 2.4虛擬環境中視角理論 15 2.5尋路性別理論 17 2.6尋路知覺理論 18 2.7尋路認知理論 20 2.8尋路其他限制因素 21 2.9尋路績效 23 2.10情感與認知 23 2.11任務設計 24 三、2D楔形應用於3D虛擬環境之研究 26 3.1研究變數 26 3.2實驗設計與程序 27 3.3實驗設備 28 3.4受測者資料 29 3.5結果與分析 29 3.6研究一討論 46 四、3D虛擬環境中2D平面與3D立體楔形設計研究 49 4.1研究變數 49 4.2實驗設計與程序 50 4.3實驗設備 51 4.4受測者資料 52 4.5結果與分析 52 4.6研究二討論 71 五、3D虛擬環境中2D楔形視覺呈現輔助設計研究 75 5.1研究變數 75 5.2實驗設計與程序 76 5.3實驗設備 78 5.4受測者資料 78 5.5結果與分析 79 5.6研究三討論 90 六、研究成果討論 94 七、結論與建議 97 參考文獻 99 附錄 108

    Aginsky, V., Harris, C., Rensink, R., & Beusmans, J. (1997). Two strategies for learning a route in a driving simulator. Journal of Environmental Psychology, 17, 317-331.
    Allen, G. L. (1999). Spatial abilities, cognitive maps, and wayfinding. In R. G. Golledge (Ed.), Wayfinding behavior: Cognitive mapping and other spatial processes. Baltimore, MD: Johns Hopkins University Press.
    Amorim, M. A., Trumbore, B., & Chogyen, P. L. (2000). Cognitive repositioning inside a desktop VE: The constraints introduced by first-versus third-person imagery and mental representation richness. Presence: Teleoperators and Virtual Environments, 9, 165-186.
    Bainbridge, W. S. (2007). The scientific research potential of virtual worlds. Science, 317, 472-476.
    Baudisch, P., & Rosenholtz, R. (2003). Halo: a technique for visualizing off-screen locations. In Proc. of the SIGCHI Conference on Human Factors in Computing Systems, 481–488. New York, NY: ACM Press.
    Biocca, F. (1992). Communication with virtual reality: Creating space for research, Journal of Communication, 42(4), 5-22.
    Burigat, S., & Chittaro, L. (2007). Navigation in 3D virtual environments: Effects of user experience and location-pointing navigation aids. International Journal of Human-Computer Studies, 65, 945-958.
    Burigat, S., & Chittaro, L. (2013). On the effectiveness of overview+ detail visualization on mobile devices. Personal and Ubiquitous Computing, 17(2). 371-385.
    Burigat, S., Chittaro, L., & Vianello, A. (2012). Dynamic visualization of large numbers of off-screen objects on mobile devices: An experimental comparison of wedge and overview+detail. In MobileHCI '12 Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services, 93-102. New York, NY: ACM.
    Carter, B., & Click, A. (2006). Imagine the real in the virtual: Experience your Second Life. The 22nd Annual Conference on Distance Teaching and Learning. Madison, WI: University of Wisconsin.
    Chen, C. H., Chen, S. C., Huang, Y. C., & Hsiao, W. H. (2012). Users' wayfinding behavior in a virtual environment of different screen sizes. Proceedings of the 10th Asia Pacific Conference on Computer Human Interaction (APCHI 2012). 563-570. Matsue, Japan.
    Chen, C. W., You, M. L., & Chiou, S. C. (2003). Psycho-pleasurability of maps for wayfinding, In Proceedings of the 6th Asian Design International Conference, 1-8. Tsukuba, Japan. (in CD-ROM form)
    Chen, J. L., & Stanney, K. M. (1999). A theoretical model of wayfinding in virtual environments: Proposed strategies for navigation aiding. Presence: Teleoperators & Virtual Environments, 8(6), 671-685.
    Chesney, T., Chuah, S. H., & Hoffmann, R. (2007). Virtual world experimentation: An exploratory study. Nottingham, London: Industrial Economics Division, Nottingham University Business School.
    Chittaro, L. (2006). Visualizing information on mobile devices. IEEE Computer, 39, 40–45.
    Coluccia, E., Iosue, G., & Brandimonte, A. M. (2007). The relationship between map drawing and spatial orientation abilities: A study of gender differences. Journal of Environmental Psychology, 27, 135-144.
    Conroy, R. A. (2001). Wayfinding in the real and virtual world. In Spatial Navigation in Immersive Virtual Environments, 23-48. London: University College London.
    Darken, R. P. (1995). Wayfinding in large-scale virtual worlds. Conference Companion ACM SIGCHI’95, 45-46.
    Darken, R. P., & Peterson, B. (2002). Spatial orientation, wayfinding, and representation. In K. M. Stanney, (Ed.), Handbook of virtual environments: Design, implementation, and applications. Mahwah, NJ: Lawrence Erlbaum.
    Denis, M. (1997). The description of routes: A cognitive approach to the production of spatial discourse. Cahiers de Psychologie Cognitive, 16, 409-458.
    Denis, M., Pazzaglia, R., Cornoldi, C., & Bertolo, L. (1999). Spatial discourse and navigation: An analysis of route directions in the city of venice. Applied Cognitive Psychology, 13, 145-174.
    Devlin, A. S., & Bernstein, J. (1995). Interactive wayfinding: Use of cues by men and women. Journal of Environmental Psychology, 15, 23-38.
    Downs, R., & Stea, D. (1973). Image and environment: Cognitive mapping and spatial behavior. Chicago, IL: Aldine.
    Fabricatore, C., Nussbaum, M., & Rosas, R. (2002). Playability in action videogames: A qualitative design model. Human-Computer Interaction, 17, 311-368.
    Fallman, D. (2008). The interaction design research triangle of design practice, design studies, and design exploration. Design Issues. 24(3), 4-18.
    Fiske, S. T. & Taylor, S. E. (1984). Social cognition (1st ed.). Boston, MA: Addison-Wesley Press.
    Ferringtonm, G., & Loge, K. (1992).Virtual reality: A new learning environment. The Computing Teacher, 19(7), 16-19.
    Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive developmental inquiry. American Psychologist, 34, 906-911.
    Galea, L. A. M., & Kimura, D. (1993). Sex differences in route-learning. Personality and Individual Differences, 14(1), 53-65.
    Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & Gaming: An Interdisciplinary Journal, 33, 441-467.
    Gluck, M. (1990). Making sense of human wayfinding: A review of cognitive and linguistic knowledge for personal navigation with a new research direction. Myke Gluck School of Information Studies. Syracuse, NY: Syracuse University.
    Golledge, R. G. (1999). Human wayfinding and cognitive maps. In R. G. Golledge (Eds.), Wayfinding behavior: cognitive mapping and other spatial processes, (pp.1-45). Baltimore, MD: Johns Hopkins University Press.
    Gustafson, S., Baudisch, P., Gutwin, C., & Irani, P. (2008). Wedge: Clutter-free visualization of off-screen locations.In CHI '08 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 787-796, New York, NY: ACM.
    Hayes, A. E., Paul, M. A., Beuger, B., & Tipper, S. P. (2008). Self produced and observed actions influence emotion: The roles of action fluency and eye gaze. Psychological Research, 72, 461-472.
    Head, D. and Isom, M. (2010). Age effects on wayfinding and route learning skills. Behavioural Brain Research, 209(1), 49-58.
    Heikkinen, J., Rantala, J., Olsson, T., Raisamo, R., Lylykangas, J., Raisamo, J., Surakka, V., & Ahmaniemi, T. (2009). Enhancing personal communication with spatial haptics: Two scenario-based experiments on gestural interaction. Journal of Visual Languages & Computing, 20, 287–304.
    Henze, N., & Boll, S. (2010). Push the study to the app store: Evaluating off-screen visualizations for maps in the android market. In MobileHCI '10 Proceedings of the 12th international conference on Human computer interaction with mobile devices and services, 373-374, New York, NY: ACM.
    Hoggan, E., & Brewster, A. S. (2010). Crosstrainer: Testing the use of multimodal interfaces in situ. In CHI ’10 Proceedings of the 28th international conference on Human factors in computing systems, 333-342, New York, NY: ACM.
    Hornbaek, K., & Frokjaer, E.(2003). Reading patterns and usability in visualizations of electronic documents. ACM Transactions on Computer–Human Interaction, 10, 119–149.
    Jacob, R., Mooney, P., Corcoran, P., & Winstanley, C. A. (2011). Integrating haptic feedback to pedestrian navigation applications. In Proceedings of the GIS Research UK 19th Annual Conference GISRUK 2011, 205–215. UK: University of Portsmouth.
    Johns, C. (2003). Spatial learning: Cognitive mapping in abstract virtual environments. Paper presented at the Proceedings of the 2nd international conference on Computer graphics, virtual Reality, visualization and interaction in Africa, 7-16, New York, NY: ACM.
    Kallinen, K., Salminen, M., Ravaja, N., Kedzior, R., & Saaksjarvi, M. (2007). Presence and emotion in computer game players during 1st person vs. 3rd person playing view: Evidence from self-report, eye-tracking, and facial muscle activity data. In Proceedings of Presence 2007, 187-190. Barcelona, Spain: International Society for Presence Research.
    Kitchin, R. M. (1997). Exploring spatial thought. Environments and Behavior, 29, 123-156.
    Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30, 765-779.
    Lawton, C. A. (1996). Strategies for indoor way-finding: The role of orientation. Journal of Environmental Psychology, 16, 127-145.
    Lawton, C. A., Chrleston, S. I., & Zieles, A. S. (1996). Individual- and gender-related differences in indoor wayfinding. Environment and Behavior, 28, 204-219.
    Lohman, D. F. (1979). Spatial ability: Review and re-analysis of the correlational literature. Stanford University Technical Report 8. Cited in Infield, S., (1991) An Investigation into the Relationship Between Navigation Skill and Spatial Abilities. Doctoral Thesis. University of Washington.
    Looi, C.-K., Zhang, B., Chen, W., Seow, P., Chia, G., Norris, C., &Soloway, E. (2011). 1:1 mobile inquiry learning experiencefor primary science students: a study of learning effectiveness. Journal of Computer Assisted Learning, 27, 269–287.
    Mallon, B., & Webb, B. (2000). Structure, causality, visibility and interaction: Propositions for evaluating engagement in narrative multimedia. International Journal of Human-Computer Studies, 53, 269-287.
    Magliano, J. P., Cohen, R., Allen G. L., & Rodrigue J. R. (1995). The impact of a wayfinder’s goal on learning a new environment: Different types of spatial knowledge as goals. Journal of Environmental Psychology, 15, 65-75.
    Maniar, N., Bennett, E., Hand, S., & Allan, G. (2008). The effect of mobile phone screen size on video based learning. Journal of Software, 3(4), 51-61.
    Marcus, E. G., Neuman, W. R., & MacKuen, M. (2000). Affective intelligence and political judgment. Chicago, IL: The University of Chicago Press.
    May, A. J., Ross, T., Bayer, S. H., & Tarkianen, M. J. (2003). Pedestrian navigation aids: Information requirements and design implications. Personal & Ubiquitous Computing, 7(6), 331-338.
    Mclellan, H. (1994). Virtual reality and multiple intelligence: Potential for higher education. Journal of Computing in Higher Education, 5(2), 33-66.
    Newman, L. E., Caplan, B. J., Kirschen, P. M., Korolev, O. I., Sekuler, R., & Kahana, J. M. (2007). Learning your way around town: How virtual taxicab drivers learn to use both layout and landmark information. Cognition, 104, 231-253.
    Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a “virtual” maze: Sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19, 73-87.
    Norman, D. A., Ortony, A., & Russell, D. M. (2003). Affect and Machine Design: Lessons for the Development of Autonomous Machines [Electronic version]. IBM Systems Journal, 42(1), 38-44. Retrieved July 14, 2009, from 11111111111111111111111111111111111111 http://www.cs.northwestern.edu/~jet/Teach/2002_1meetFaculty/10_22_Norman5.8F.pdf
    Norman, D. A. (2004). Emotional design: Why we love (or hate) everyday things. New York, NY: Basic Books.
    Ni, T., Bowman, A. D., & Chen, J. (2006). Increased display size and resolution improve task performance in information-rich virtual environments. Proceedings of Graphics Interface 2006, 139-146. Toronto, Canada: ACM.
    O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford, London: Clarendon.
    O’Neill, M. J. (1991). Effects of signage and floor plan configuration on wayfinding accuracy. Environment and Behavior, 23(5), 553-574.
    Parush, A., Ahuvia, S., & Erev, I. (2007). Degradation in spatial knowledge acquisition when using automatic navigation systems. Spatial Information Theory, Lecture Notes in Computer Science, 4736, 238–254.
    Passini, R. (1992). Wayfinding in architecture, Van Nostrand Reinhold, New York.
    Passini, R. (1995). Spatial representations: A wayfinding perspective, In D. Canter, (Eds.), Reading in environmental psychology, 129-139. London: Academic Press.
    Paneels, S., & Roberts, J. (2010). Review of designs for haptic data visualization. Haptics, IEEE Transactions on, 3(2), 119–137.
    Peponis, J., Zimring, C., & Choi, Y. K. (1990). Finding the building in wayfinding. Environment and Behavior, 22(5), 555-590.
    Raja, K. M., & Giudice, A. N. (2011). Haptic spatial learning of indoor spaces using touchscreen enabled smartphone devices. In 10th International Conference on Spatial Information Theory, 95-100. ME: Waldo.
    Riva, G., Mantovani, F., Capideville, C. S., Preziosa, A., Morganti, F., & Villani, D. (2007). Affective interactions using virtual reality: The link between presence and emotions. Cyber-Psychology & Behavior, 10, 45-56.
    Robinson, S., Jones, M., Eslambolchilar, P., Smith, M. R., & Lindborg, M. (2010). ”I did it my way”: moving away fromthe tyranny of turn-by-turn pedestrian navigation. In MobileHCI ’10: Proceedings of the 12th international conference on Human computer interaction with mobile devices and services, 341–344. New York, NY: ACM.
    Roto, V., Popescu, A., Koivisto, A., & Vartiainen, E. (2006). Minimap: A web pagevisualization method for mobile phones. In Proceedings Conference on Human Factors in Computing Systems (CHI 2006), 35–44.
    Ruby, P., & Decety, J. (2001). Effect of subjective perspective taking during simulation of action: A PET investigation of agency. Nature Neuroscience, 4, 546-550.
    Ruddle, R. A., Payne, S. J., & Jones, D. M. (1997). Navigation building in “Desk-Top” virtual environments: Experimental investigation using extended navigational experience. Journal of Experimental Psychology: Applied, 3(2), 143-159.
    Saffer, D. (2009). Design gestural interfaces. Sebastopol, CA: O'Reilly Media.
    Sahami, A., Holleis, P., Schmidt, A., & Hakkila, J. (2008). Rich tactile output on mobile devices. Ambient Intelligence, Lecture Notes in Computer Science, 5355, 210–221.
    Satalich, G. A. (1995). Navigation and wayfinding in virtual reality: Finding proper tools and cues to enhance navigation awareness. Master dissertation, Washington University.
    Schuurink, L. E., & Toet, A. (2010). Effects of third person perspective on affective appraisal and engagement: Findings from Second life. Simulation Gaming, 41(5), 724-742.
    Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large scale environments. Advances in Child Development and Behavior, 10, 10-55.
    Srikulwong, M., & O’Neill, E. (2011). A comparative study of tactile representation techniques for landmarks on a wearable device. In CHI ’11 Proceedings of the 2011 annual conference on Human factors in computing systems, 2029–2038. New York, NY: ACM.
    Tan, S. D., Gergle, D., Scupelli, G. P., & Pausch, R. (2004). Physically large displays improve path integration in 3D virtual navigation tasks. In Proceedings of the SIGCHI conference on Human factors in computing systems, 439-446. New York, NY: ACM.
    Taylor, H. A., Naylor, S. J., & Chechile, N. A. (1999). Goal-specific influences on the representation of spatial perspectives. Memory and Cognition, 27, 309-319.
    Tversky, B. (2000). Remembering Spaces. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (2nd ed., 363-378). New York: Oxford University Press.
    Tversky, B., & Lee, P. (1999). Pictorial and verbal tools for conveying routes. Conference on Spatial Information Theory, Stade/near Hamburg, Germany.
    Vogeley, K., May, M., Ritzl, A., Falkai, P., Zilles, K., & Fink, G. R. (2004). Neural correlates of first-person perspective as one constituent of human self-consciousness. Journal of Cognitive Neuroscience, 16(5), 817-827.
    Ware, C. (2000). Information visualization: Perception for design, San Francisco, CA: Morgan Kaufman.
    Winograd, T. (1997). From computing machinery to interaction design. In P. Denning and R. Metcalfe (Eds.) Beyond Calculation: The next fifty years of computing, (pp.149-162). Amsterdam: Springer-Verlag.
    Yellowlees, P. M., & Cook, J. N. (2006). Education about hallucinations using an internet virtual reality system: A qualitative survey. Academic Psychiatry, 30, 534-539.
    呂亨英(譯) (2008)。設計的法則(原作者:W. Lidwell, K. Holden, & J. Butler)台北市:原點出版。(原著出版年:2003)
    陳一平(2011)。視覺心理學。台北市:雙葉書廊。
    陳格理(1999)。圖書館尋路工作之理念與設計。中國圖書館學會會報,62, 119-134.
    陳建雄(譯) (2006)。互動設計:跨越人:電腦互動(原作者:J. Preece, Y. Rogers , & H. Sharp)。台北:全華出版。(原著出版年:2003)
    黃國蓉(2013年5月29日)。MIC年度調查/ 行動內容商機崛起,經濟日報。2013年5月29日,取自http://udn.com/NEWS/FINANCE/FIN3/7928475.shtml
    鄭巧玉(譯) (2012)。行動介面設計模式(原作者:S. Hoober, & E. Berkman)。台北市:基資訊股份有限公司。(原著出版年:2012)

    QR CODE