簡易檢索 / 詳目顯示

研究生: 陳林震
Lin-Cheng chen
論文名稱: 電漿沉積氫化非晶矽/鍺薄膜於單晶矽/鍺晶片上的磊晶臨界溫度之研究
Amorphous to crystalline transition of a-Si:H/a-Ge:H on silicon/germanium wafers
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 陳良益
Liang-Yih Chen
周賢鎧
Shyan-Kay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 75
中文關鍵詞: 磊晶臨界現象氫化非晶矽氫化非晶鍺矽晶/鍺晶有效載子生命週期反射式電子高能繞射
外文關鍵詞: Amorphous to crystalline transition, a-Ge:H, Si/Ge wafers, RHEED
相關次數: 點閱:292下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文乃以未來世代高效矽晶太陽能電池的技術發展為議題,針對矽 晶以及鍺晶可能製作矽、鍺異質接合,分別以射頻電漿輔助化學氣相沉積法將氫化非晶矽及氫化非晶鍺薄膜沉積於鍺晶及矽晶上,以反射式電子高能繞射觀察異質/同質之結晶臨界溫度且探討做為鈍化層薄膜的鈍化效果。
    將氫化非晶鍺薄膜及氫化非晶矽薄膜沉積於鍺晶片上加以比較兩者之結晶臨界溫度,可以發現不論在高沉積速率或低沉積速率下,同質沉積均較易觀察到結晶的現象,然而將氫化非晶鍺薄膜及氫化非晶矽薄膜沉積於矽晶片上卻在低成長速率發現不同的結果。
    於500 μm單晶鍺晶片雙面沉積30 nm氫化非晶矽薄膜之最佳有效載子生命週期達180.7 μs ;於280 μm單晶矽晶片雙面沉積30 nm氫化非晶鍺薄膜之最佳有效載子生命週期可達164.3 μs;而於500 μm單晶鍺晶片雙面沉積30 nm氫化非晶鍺薄膜之有效載子生命週期最高可達269.7 μs 。


    In this thesis, we explored the basis phenomena for developing high efficienty crystalline Si/Ger heterojunction solar cells. We grew hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous germanium (a-Ge:H) thin layers on silicon and germanium wafers using PECVD method and observed the amorphous to crystalline phase transition regime as functions of substrate temperature and film growth rate. By depositing 3 nm of thin layers and analyzed using RHEED, we obserbed that the transition temperature for a-Si:H grown on Ge is about 35 °C higher than that on Ge under a growth rate of 3 Å /s, while the transition temperature for a-Ge:H grown on Si is about 10 °C higher than that on Ge.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VII 表索引 XII 第一章緒論 1 1.1 前言 1 1.2 半導體材料的性質 4 1.2-1 單晶矽的性質 4 1.2-2單晶鍺的性質 5 1.3 p-n接面 6 1.4單晶/非晶異質接合太陽能電池 9 1.5晶矽太陽電池的表面複合及鈍化 10 1.5-1表面複合 10 1.5-2表面鈍化 12 1.6薄膜的性質 14 1.6-1非晶矽薄膜的性質 14 1.6-2非晶鍺薄膜的性質 18 1.7矽鍺晶異質接合(a-Si:H/c-Ge & a-Ge:H/c-Si)鍍膜技術 19 1.7-1熱絲化學氣相沉積(Hot-wire CVD) 20 1.7-2射頻電漿輔助化學氣相沉積 (RF-PECVD) 21 1.7-3超高頻電漿輔助化學氣相沉積(VHF-PECVD) 22 1.8研究目的與方向 24 第二章實驗相關部分 26 2.1 實驗裝置 26 2.1-1實驗氣體、基材及藥品 26 2.1-2使用rf-PECVD系統成長本質層 30 2.2 實驗程序 33 2.2-1矽晶基材之清洗 33 2.2-2鍺晶基材之清洗 35 2.2-3玻璃基材之清洗 36 2.2-4 沉積非晶矽、非晶鍺薄膜於矽、鍺晶片上 37 2.3 分析儀器 38 2.3-1 橢圓偏光儀(Ellipsometer) 38 2.3-2反射式高能電子繞射(reflection high energy electron diffraction, RHEED) 39 2.3-3微波光電導衰減法少子壽命測試儀(μ-PCD) 41 2.3-4傅立葉紅外線光譜儀(FTIR) 43 2.3-5拉曼光譜儀(Raman) 45 第三章結果與討論 47 3.1於鍺晶上成長氫化非晶矽 47 3.2於矽晶上成長氫化非晶鍺 55 3.3於鍺晶上成長氫化非晶鍺 62 3.4將氫化非晶矽/鍺成長於矽晶與鍺晶結晶臨界溫度比較 68 第四章 結論 70 參考文獻 71 作者簡介 75

    1."Best Research-Cell Efficiencies," National Renewable Energy Laboratory, NREL, 2016.
    2.EPIA, Global Market Outlook for Photovoltaics until 2016, May (2016).
    3.Green, M. A., & Keevers, M. J. (1995). Optical properties of intrinsic silicon at 300 K. Progress in Photovoltaics: Research and Applications, 3(3), 189-192.
    4.https://www.photonics.com/Article.aspx?AID=30705
    5."Chapter 6: Diodes." Fundamentals of Electrical Engineering. 2nd ed. New York, New York: Oxford UP, 1996. 352-54. Print.
    6.http://panasonic.co.jp/corp/news/official.data/data.dir/2014/04/en140410-4/en140410-4.html
    7.Tsunomura, Y., Yoshimine, Y., Taguchi, M., Baba, T., Kinoshita, T., Kanno, H., ... & Tanaka, M. (2009). Twenty-two percent efficiency HIT solar cell. Solar Energy Materials and Solar Cells, 93(6), 670-673.
    8.Maruyama, E., Terakawa, A., Taguchi, M., Yoshimine, Y., Ide, D., Baba, T., ... & Tanaka, M. (2006, May). Sanyo's challenges to the development of high-efficiency HIT solar cells and the expansion of HIT business. In Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on (Vol. 2, pp. 1455-1460). IEEE.
    9.Fujishima, D., Inoue, H., Tsunomura, Y., Asaumi, T., Taira, S., Kinoshita, T., ... & Maruyama, E. (2010, June). High-performance HIT solar cells for thinner silicon wafers. In Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE (pp. 003137-003140). IEEE.
    10.Sritharathikhun, J., Banerjee, C., Otsubo, M., Sugiura, T., Yamamoto, H., Sato, T., ... & Konagai, M. (2007). Surface passivation of crystalline and polycrystalline silicon using hydrogenated amorphous silicon oxide film. Japanese journal of applied physics, 46(6R), 3296.
    11.Lien, S. Y., & Wuu, D. S. (2009). Simulation and fabrication of heterojunction silicon solar cells from numerical computer and hot‐wire CVD. Progress in Photovoltaics: Research and Applications, 17(7), 489-501.
    12.Nelson, J. (2003). The physics of solar cells. World Scientific Publishing Co Inc.
    13.Korte, L., Conrad, E., Angermann, H., Stangl, R., & Schmidt, M. (2009). Advances in a-Si: H/c-Si heterojunction solar cell fabrication and characterization. Solar Energy Materials and Solar Cells, 93(6), 905-910.
    14.Korte, L., Conrad, E., Angermann, H., Stangl, R., & Schmidt, M. (2009). Advances in a-Si: H/c-Si heterojunction solar cell fabrication and characterization. Solar Energy Materials and Solar Cells, 93(6), 905-910.
    15.Hoex, B., Gielis, J. J. H., Van de Sanden, M. C. M., & Kessels, W. M. M. (2008). On the c-Si surface passivation mechanism by the negative-charge-dielectric Al 2 O 3. Journal of Applied Physics, 104(11), 113703.
    16.Street, R. A. (2005). Hydrogenated amorphous silicon. Cambridge University Press.
    17.Shanks, H., Fang, C. J., Ley, L., Cardona, M., Demond, F. J., & Kalbitzer, S. (1980). Infrared spectrum and structure of hydrogenated amorphous silicon. physica status solidi (b), 100(1), 43-56.
    18.Cohen, M. H., Fritzsche, H., & Ovshinsky, S. R. (1969). Simple band model for amorphous semiconducting alloys. Physical Review Letters, 22(20), 1065.
    19.Kim, J. C., & Schwartz, R. J. (1996). Parameter estimation and modeling of hydrogenated amorphous silicon. ECE Technical Reports, 89.
    20.Heya, A., Kanda, K., Toko, K., Sadoh, T., Amano, S., Matsuo, N., ... & Mochizuki, T. (2013). Low-temperature crystallization of amorphous silicon and amorphous germanium by soft X-ray irradiation. Thin Solid Films, 534, 334-340.
    21.Keita, A. S., Wang, Z., Phillipp, F., Bischoff, E., & Mittemeijer, E. J. (2016). Highly retarded crystallization in hydrogenated amorphous germanium; emergence of a porous nanocrystalline structure. Thin Solid Films, 615, 145-151.
    22.Jobson, K. W., Wells, J. P., Schropp, R. E. I., Carder, D. A., Phillips, P. J., & Dijkhuis, J. I. (2006). Time resolved spectroscopy of Ge-H stretching vibrations in hydrogenated amorphous germanium. Infrared physics & technology, 49(1), 3-6.
    23.Pierson, Hugh O. Handbook of chemical vapor deposition: principles, technology and applications. William Andrew, 1999.
    24.Muñoz Cervantes, D. (2008). Silicon heterojunction solar cells obtained by Hot-Wire CVD. Universitat Politècnica de Catalunya.
    25.連水養, 吳秉叡, 毛信元, & 武東星. (2006). 氫氣在熱燈絲 CVD 沉積多晶矽薄膜成長機制之影響. 真空科技, 19(3), 113-117.
    26.Street, R. A. (2005). Hydrogenated amorphous silicon. Cambridge University Press.
    27.Staebler, D. L., & Wronski, C. R. (1977). Reversible conductivity changes in discharge‐produced amorphous Si. Applied physics letters, 31(4), 292-294.
    28.Oda, S. (1993). Frequency effects in processing plasmas of the VHF band. Plasma Sources Science and Technology, 2(1), 26.
    29.Schwarzenbach, W., Howling, A. A., Fivaz, M., Brunner, S., & Hollenstein, C. (1996). Sheath impedance effects in very high frequency plasma experiments. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 14(1), 132-138.
    30.Takatsuka, H., Noda, M., Yonekura, Y., Takeuchi, Y., & Yamauchi, Y. (2004). Development of high efficiency large area silicon thin film modules using VHF-PECVD. Solar Energy, 77(6), 951-960.
    31.Liu, C. S., Wu, C. Y., Chen, I. W., Lee, H. C., & Hong, L. S. (2013). High‐rate deposition of a‐Si: H thin layers for high‐performance silicon heterojunction solar cells. Progress in Photovoltaics: Research and Applications, 21(3), 326-331.
    32.Hongsingthong, Aswin, et al. , Jpn. J. Appl. Phys. Appl. 51.10 (2012).
    33.Vickerman, J. C., & Gilmore, I. (Eds.). (2011). Surface analysis: the principal techniques. John Wiley & Sons.
    34.Bianco, E., Butler, S., Jiang, S., Restrepo, O. D., Windl, W., & Goldberger, J. E. (2013). Stability and exfoliation of germanane: a germanium graphane analogue. Acs Nano, 7(5), 4414-4421.
    35.Steenhoff, V., Juilfs, M., Ravekes, R. E., Vehse, M., & Agert, C. (2016). Resonant-cavity-enhanced a-Ge: H nanoabsorber solar cells for application in multijunction devices. Nano Energy, 27, 658-663.
    36.Burrows, M. Z., Das, U. K., Opila, R. L., De Wolf, S., & Birkmire, R. W. (2008). Role of hydrogen bonding environment in a-Si: H films for c-Si surface passivation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 26(4), 683-687.
    37.Tetsuya Kaneko and Michio Kondo, Japanese Journal of Applied Physics 50 (2011)
    38.Fujiwara, H., & Kondo, M. (2007). Impact of epitaxial growth at the heterointerface of a-Si: H∕ c-Si solar cells. Applied Physics Letters, 90(1), 013503.
    39.Cardona, M. (1983). Vibrational spectra of hydrogen in silicon and germanium. physica status solidi (b), 118(2), 463-481.
    40.Isomura, M., Kondo, M., & Matsuda, A. (2002). Device-grade amorphous silicon prepared by high-pressure plasma. Japanese journal of applied physics, 41(4R), 1947.
    41.李耿亘,國立台灣科技大學,2014
    42.Manotas, S., Agulló-Rueda, F., Moreno, J. D., Ben-Hander, F., & Martınez-Duart, J. M. (2001). Lattice-mismatch induced-stress in porous silicon films. Thin Solid Films, 401(1), 306-309.

    QR CODE