簡易檢索 / 詳目顯示

研究生: 陳珈璟
Chia-Ching Chen
論文名稱: 14位元高精度電流導向式數位至類比轉換器
A 14-bit High Accuracy Current-Steering Digital-to-Analog Converter
指導教授: 陳伯奇
Poki Chen
方劭云
Shao-Yun Fang
口試委員: 鍾勇輝
Yung-Hui Chung
郭建宏
Chien-Hung Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 86
中文關鍵詞: 數位至類比轉換器
外文關鍵詞: Digital-to-analog converter
相關次數: 點閱:195下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計實現一顆14位元的數位至類比轉換器,採用電流導向式架構與一種構建多元件高精度匹配佈局的方法,來達到高速與高精度的性能。
    這顆14位元電流導向式數位至類比轉換器使用分段式混合架構,高位元部分的8位元採用溫度計碼編碼方式,透過解碼器將輸入訊號的二進位元權重碼解碼成溫度計碼來控制電流源陣列,該電流源陣列使用修正式Q2隨機佈局樣式(Modified Quad Quadrant Random Pattern)之高精度匹配佈局來消除系統性不匹配的影響,並透過佈局自動化實現電流源陣列的佈局。低位元部分的6位元使用二進位元權重式編碼方式,透過本論文所提出電流分流器的高匹配性電流源架構,在增加解析度的同時,依舊保有較快之操作速度。
    此數位至類比轉換器是由UMC 0.18um Mixed-Signal 1P6M製程來實現,操作於1.8V與3.3V的供應電壓下,積分非線性誤差為 ,轉換速率為100MHz,核心晶片面積為1.153mm2。

    關鍵字:電流導向式數位至類比轉換器、系統性不匹配、修正式Q2隨機佈局樣式、佈局自動化


    A 14-bit digital-to-analog converter (DAC)is prosed and implemented in this thesis. It adopts current-steering architecture and multi-element precision matching layout for high-speed and high-accuracy applications.
    The proposed 14-bit high accuracy current-steering DAC utilizing segmented architecture. The eight-bit most significant bits are decoded from binary code to thermometer code by a thermometer decoder which steers the unary weighted current source array. The systematic mismatch of this current source array is canceled by highly matching layout called Modified Q2 Random Pattern created by our research team. The six-bit least significant bits are constructed as a binary weighted current source array implemented by current splitters also proposed by our team to enhance its accuracy.
    The DAC is implemented in a UMC 0.18um Mixed-Signal 1P6M process powered with 1.8V/3.3V dual supplies. The integral nonlinearity and sampling frequency of the post-simulation are and 100 MHz respectively. The chip core area is merely 1.153mm2.
    Keyword: Current-steering digital-to-analog converter,Systematic mismatch,Modified Q2 Random Pattern,Layout automation.

    目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究動機 1 1-2 論文架構 2 第二章 數位至類比轉換器的基本原理 3 2-1 理想數位至類比轉換器 3 2-2 理想數位至類比轉換器特性 4 2-3 數位至類比轉換器之規格參數 5 2-3-1 靜態參數 5 2-3-2 動態參數 10 2-4 數位至類比轉換器之架構簡介 15 2-4-1 解碼器轉換器架構 15 2-4-2 二進位權重式轉換器架構 17 2-4-3 溫度計碼式轉換器架構 20 2-4-4 混合式轉換器架構 22 2-5 結論 23 第三章 數位至類比轉換器之設計考量 24 3-1 電流源電晶體不匹配特性 24 3-2 隨機錯誤 25 3-3 電流源的有限輸出阻抗分析 27 3-4 電流源開關電晶體的非理想效應 30 3-5 電流源頻寬分析 31 3-6 控制訊號耦合效應 32 3-7 電流源陣列不匹配特性 33 3-8 總結 36 第四章 數位至類比轉換器電路設計與佈局實現 37 4-1 分段式數位至類比轉換器設計 38 4-2 高位元電流源設計 40 4-2-1 電路架構介紹與決定 41 4-2-2 利用Verilog-A行為模擬電流源特性 43 4-2-3 修正式Q2隨機佈局樣式佈局方法 45 4-3 低位元電流源設計 52 4-4 去突波升壓電路設計 54 4-5 電流緩衝器與輔助電流源設計 57 4-6 解碼器設計 58 第五章 晶片模擬結果及未來展望 60 5-1 靜態模擬結果 60 5-2 動態模擬結果 63 5-3 晶片效能比較 68 5-4 結論與未來展望 69 參考文獻 70

    [1] A. Hastings, “The art of analog layout,” Prentice Hall, 2006.
    [2] G.A. M. Van Der Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaert, and G. G. E. Gielen, “A 14-bit intrinsic accuracy Q2 random walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1708-1718, Dec. 1999.
    [3] B. Razavi, “Principles of Data Conversion System Design,” New York, Wiley-IEEE Press, 1994.
    [4] Tony Chan Carusone, David A. Johns, and Kenneth W. Martin, “Analog Integrated Circuit Design 2/E,” John Wiley, 2012.
    [5] A. Van den Bosch, M. Steyaert, and W. Sansen, “SFDR-bandwidth limitations for high-speed high-resolution current-steering CMOS D/A converters,” IEEE Int. Conf. Electronics on Circuits and Systems (ICECS), vol. 3, pp. 1193-1196, Sept. 1999.
    [6] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “ Matching Properties of MOS Transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, Oct. 1989.
    [7] A. Van den Bosch, M. Steyaert, and W. Sansen, “An accurate statistical yield model for CMOS current-steering D/A converter,” IEEE Int. Symp. on Circuit and Systems (ISCAS) , vol. 4, pp. IV.105-IV.108, May 2000.
    [8] 劉沛潔 “通訊系統中數位類比轉換器之電路設計, ” 晶片系統002期.
    [9] Chi-Hung Lin and K. Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6 mm2, ” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1948-1958, Dec. 1998.
    [10] Xin Dai, Chengming He, Hanqing Xing, Degang Chen, and R. Geiger, “ An Nth order Central Symmetrical Layout Pattern for Nonlinear Gradients Cancellation, ” IEEE Int. Symp. on Circuit and Systems (ISCAS), pp. 4835-4838, May 2005.
    [11] Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, “A 10-b 70-MS/s CMOS D/A converter, ” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 637-642, Apr. 1991.
    [12] B. Razavi, ”Design of analog CMOS integrated circuits, “Mc Graw-Hill College, 2002.
    [13] Shantanu Gupta, Vishal Saxena, Kristy A. Campbell, and R. Jacob Baker, “ W-2W Current Steering DAC for Programming Phase Change Memory, ” IEEE Workshop on Microelectronics and Electron Devices, pp.1-4, Apr. 2009.
    [14] T. Miki, Y. Nakamura, M. Nakaya, S. Asai, Y. Akasaka, and Y. Horiba, “An 80-MHz 8-bit CMOS D/A converter, ” IEEE J. Solid-State Circuits, vol. 21, no. 6, pp. 983-988, Dec. 1986.
    [15] Yonghua Cong, and R. L. Geiger, “Switching sequence optimization for gradient error compensation in thermometer-decoded DAC arrays, ” IEEE Trans. on Circuit and Systems II, vol. 47, no. 7, pp. 585-595, Jul. 2000.
    [16] A. Van den Bosch et al., “A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A Converter,” IEEE J. Solid-State Circuits, vol.36, no. 3, pp. 315-324, Mar. 2001.
    [17] Manoj Kumar, Sandeep K. Arya, and Sujata Pandey, “Level Shifter Design for Low Power Applications,” International Journal of Computer Science & Information Technology, vol. 2, no. 5, Oct. 2010.
    [18] K. R. Lakshmikumar, R. A. Hadaway, and M. A. Copeland, “Characterisation and Modeling of Mismatch in MOS Transistors for Precision Analog Design, ” IEEE J. Solid-State Circuits, vol.21, no. 6, pp. 1057-1066, Dec. 1986.
    [19] Jen-Huan Tsai, Yen-Ju Chen, Yan-Fong Lai, Meng-Hung Shen, and Po-Chiun Huang, “A 14-bit 200MS/s Current-Steering DAC Achieving over 82dB SFDR with Digitally-Assisted Calibration and Dynamic Matching Technique, ” IEEE Int. Symp. on Design, Automation, and Test (VLSI-DAT), pp. 1-4, Apr. 2012.
    [20] Xu Zhen, Li Xueqing, Liu Jianan, Wei Qi, Luo Li, and Yang Huazhong, “A 14-bit 500MS/s DAC with digital background calibration, ” Journal of Semiconductors, vol. 35, no. 3, pp. 035008.1-035008-6, Mar. 2014.
    [21] J. Bastos, M. S. J. Steyaert, A. Pergoot, and W. M. Sansen, “Influence of Die Attachment on MOS Transistor Matching, ”IEEE Trans. on Semiconductor Manufacturing, vol. 10, no. 2, pp. 209-218, May 1997.
    [22] Chueh-Hao Yu, Ching-Hsuan Hsieh, Tim-Kuei Shia, and Wen-Tzao Chen, “A 90nm 10-Bit 1GS/s Current-Steering DAC with 1-V Supply Voltage, ” IEEE Int. Symp. on Design, Automation, and Test (VLSI-DAT), pp. 255-258, Apr. 2008.
    [23] Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, “A 10-b 70-MS/s CMOS D/A converter, ” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 637-642, Apr. 1991.
    [24] Tao Chen and Georges G. E. Gielen, “A 14-bit 200-MHz Current-Steering DAC With Switching-Sequence Post-Adjustment Calibration,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 2386-2394, Nov. 2007.
    [25] Yunhua Yu, Haitao Shi, and Weining Ni, “An I/Q channel 12-bit 200MS/s CMOS DAC with three stage decoders for wireless communication, ” IEEE Int.Conf. on Wireless Communications & Signal Processing (WCSP), pp. 1-4, Nov. 2009.
    [26] Yongjion Tang, Joost Briaire, Kostas Doris, Robert van Veldhoven, Pieter C. W. van Beek, Hans Johannes A. Hegt, and Arthur H. M. van Roermund, “A 14 bit 200 MS/s DAC With SFDR > 78 dBc, IM3 < -83 dBc and NSD < -163 dBm/Hz Across the Whole Nyquist Band Enabled by Dynamic-Mismatch Mapping,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1371-1381, Apr. 2011.
    [27] J. Bastos, A.M. Marques, M. S. J. Steyaert, and W. Sansen, “A 12-bit Intrinsic Accuracy High-Speed CMOS DAC, ” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1959-1969, Dec. 1998.
    [28] S. Luschas and H. S. Lee, “Output impedance requirements for DACs, ” IEEE Int. Symp. on Circuit and Systems (ISCAS), vol. 1, pp. I.861-I.864, May 2003.
    [29] Pu Luo, Weidong Yang, Dongbing Fu, and Jinshan Yu, “A transistor matching technology improving effectively DC resolution of current-steering DAC, ” IEEE Int.Conf. on Solid-State and integrated Circuit Technology (ICSICT), pp. 222-224, Nov. 2010.
    [30] Xueqing Li, Qi Wei, Zhen Xu, Jianan Liu, Hui Wang, and Huazhong Yang, “A 14 Bit 500 MS/s CMOS DAC Using Complementary Switched Current Sources and Time-Relaxed Interleaving DRRZ, ”IEEE Trans. on Circuits and Systems I, vol. 61, no. 8, pp. 2337-2347, Aug. 2014.

    無法下載圖示 全文公開日期 2021/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE