簡易檢索 / 詳目顯示

研究生: 何智遠
Chih-yuan Ho
論文名稱: 應用灰色理論與田口實驗方法於記憶體模組除料製程之品質改善與化學機械拋光參數分析
Quality Improvement of Memory Modules in Depanel Process and CMP Parameters Analysis Using Grey Theory and Taguchi Method
指導教授: 林榮慶
Zone - ching Lin
口試委員: 傅光華
Kuang-hua Fuh
成維華
Wei-hua Chieng
王國雄
Kuo-shong Wang
葉維磬
Wei-ching Yeh
許覺良
Chaug-liang Hsu
黃佑民
You-min Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 124
中文關鍵詞: 灰色理論田口方法記憶體模組除料製程化學機械拋光
外文關鍵詞: Grey Theory, Taguchi method, memory modules, Depanel process, CMP
相關次數: 點閱:351下載:48
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在應用灰色理論、田口實驗方法與製程統計分析等之理論於記憶體模組除料製程之品質改善與化學機械拋光參數分析。
    本文首先使用變異數分析與灰關聯理論分析,探討田口實驗計劃法之CMP實驗數據:如拋光正向壓力、拋光襯墊盤轉速、工件吸附盤轉速與擺動臂速度等參數,結果顯示兩者排序相同,同時針對灰關聯理論中的數據正規化對排序的靈敏度提出分析結果。
    影響記憶體除料製程中產品長度尺寸精度有床台與夾具之誤差、刀具位置、刀具磨耗、機台震動與刀具溫度等等。本文結合灰關聯分析與統計製程分析的模式找出影響除料製程準確度的最重要參數為刀具的變異,其中以刀具初期磨耗為主要因素。
    本文提出灰預測刀具補償法、預磨製程法與中心偏移法解決除料製程中,記憶體模組經常產生尺寸變異的問題。結果顯示三種方法均可改善產品之品質尺寸。此外本文使用製程能力指數計算三種方法改善之前與改善後的結果,並分析三種方式之優缺點。
    為了研究鍍膜碳化鎢刀具之使用壽命與記憶體品質,本文使用TiAlCN與Zr鍍膜兩種市售之鍍膜碳化鎢刀具與自行製作之ZrN鍍膜碳化鎢刀具進行銑切記憶體模組除料製程實驗比較。實驗結果顯示,鍍膜刀具確實在使用壽命與記憶體產品品質上均有更佳的效果。
    本文使用直流脈衝磁控濺鍍氮化鋯於碳化鎢刀具上,並由田口實驗方法結合灰關聯分析模式探討濺鍍製程最佳參數。由實驗得知,磁控濺鍍法具有方向性,所以本文設計一濺鍍刀具旋轉裝置,並找出最佳的濺鍍轉速。
    本文的研究成果可作為記憶體模組之除料製程中,尺寸變異問題的解決方案的重要參考。


    The major objective of this thesis is to apply theories such as Grey Theory, Taguchi Method and Statistical Process Control (SPC) etc. to the quality improvement of the depanel process of the memory modules, as well as the analysis of the CMP (Chemical Mechanical Polishing) parameters.
    This thesis firstly uses ANOVA (Analysis of Variance) and grey relation analysis to investigate into CMP experiment data of Taguchi Method such as: polishing down pressure, polishing platen speed, carrier speed and arm oscillation etc. The result shows that the order of importance is the same. At the same time, an analytical result is proposed regarding the sensitivity of the data regularization and data of the grey relation theory towards the order of importance.
    Factors affecting the precision of the products during the memory modules depanel process include: error between the tables and the fixtures, location of the tool, tool wear, machine vibration and cutting temperature etc. By combining the model of grey relation analysis and SPC, this thesis finds that the most important parameter affecting the accuracy of depanel process is the variation of tool, in which the preliminary tool wear can be regarded as the most important factor.
    This research proposes to use grey prediction compensation method, pre-treated method and shift center deviation method to solve the problems of dimensional variation that often occurs in the memory modules. The result shows that these three methods can all improve the quality of the products. Besides, this thesis uses process capability indices to calculate the result of these three methods before and after improvement, as well as the advantages and the disadvantages of them.
    In order to research into the tool life and the quality of the memory modules of the tungsten carbide router, this thesis uses two types of commercial available tungsten carbide router, which are TiAICN and Zr respectively, to undergo the experimental comparison towards the milling depanel process. Experimental result shows that the coated tools indeed carry a better effectiveness in their tool life and the quality of the memory module products.
    This thesis uses Pulsed-DC Reactive Magnetron Sputtering (ZrN) on the tungsten carbide router, and by combining Taguchi Method and grey relation analysis, it analyzes into the optimal parameters for sputtering process. Experiment result shows that, magnetron sputtering is indicative in direction. Therefore, this thesis designs a rotational device for the sputtering tool and finds the optimal sputtering speed.
    These research results can be provided as valuable references in solving the dimensional variation problems in the depanel process of memory modules.

    中文摘要.................................................Ⅰ 英文摘要..... ...........................................Ⅱ 誌謝 ................................................... Ⅳ 目錄 ................................................. Ⅴ 符號索引 ................................................Ⅷ 圖表索引 ................................................Ⅸ 第一章 緒論 ..............................................1 1.1研究動機與背景 ....................................1 1.2 記憶體模組之製造 ..................................3 1.3文獻回顧 .........................................7 1.3.1 灰色理論 ....................................7 1.3.2 田口實驗方法 ................................8 1.3.3 統計製程分析 ................................8 1.3.4 刀具磨耗理論 ................................9 1.3.5 薄膜製程 ...................................10 1.4 研究內容 ........................................ 12 第二章 灰色理論與田口實驗方法............................14 2.1 灰色理論 .........................................14 2.1.1 灰關聯理論 .................................14 2.1.2 灰預測理論 .................................16 2.2 田口式品質工程簡介 ...............................19 第三章 應用變異數與灰關聯分析於CMP製程參數之分析.........23 3.1 序言 .............................................23 3.2化學機械研磨拋光..................................23 3.3變異數與灰關聯分析之結果 .........................25 3.4灰關聯靈敏度測試 .................................27 第四章 記憶體除料製程之過程與尺寸變異問題分析............30 4.1 記憶體除料製程之實驗設備與過程...................30 4.2 製程管制 ........................................34 4.2.1 統計製程管制 ...............................34 4.2.2 工程製程管制 ...............................37 4.3 電路板銑切之刀具磨耗與壽命.......................38 4.4 記憶體除料製程之實驗結果.........................40 4.4.1 未鍍膜之碳化鎢刀具之製程 ...................40 4.4.2 鍍TiAlCN之碳化鎢刀具之銑切製程 ............45 4.4.3 鍍鋯之碳化鎢刀具之製程 .....................49 4.5 SPC與灰關聯分析結合模式探討除料製程之尺寸 變異問題 .........................................53 第五章 記憶體模組除料製程之改善策略及分析結果............58 5.1 改善SODIMM電路板銑切精度之策略..................58 5.1.1未鍍膜之碳化鎢刀具之灰預測補償法............58 5.1.2 鍍TiAlCN膜之碳化鎢刀具灰預測補償法 ........62 5.1.3預磨製程之策略..............................64 5.1.4中心偏移法 .................................66 5.2 三種改善方法優缺點之比較 ........................67 5.3 鍍膜碳化鎢刀具之特性比較 .......................68 第六章 濺鍍原理與薄膜量測理論 ...........................71 6.1 濺鍍原理 ........................................71 6.1.1 電漿原理 ...................................71 6.1.2 脈衝直流反應磁控濺鍍法 .....................74 6.1.3薄膜成長 ....................................78 6.2薄膜機械性質量測 .................................78 6.2.1 壓痕實驗 ...................................79 6.2.1.1 探針特性 ..............................79 6.2.1.2 實驗時須注意之因素 ....................81 6.2.2 原子力顯微鏡表面量測 .......................83 6.2.3 楊氏係數與硬度測量 .........................85 6.2.4 薄膜厚度量測 ...............................88 第七章 碳化鎢刀具濺鍍氮化鋯與量測 .......................89 7.1氮化鋯鍍膜實驗 ...................................89 7.1.2 氮化鋯鍍膜實驗過程 .........................89 7.1.3 濺鍍實驗之旋轉裝置 .........................93 7.2刀具表面量測 .....................................95 7.3應用灰關聯與田口分析濺鍍氮化鋯之最佳參數..........99 7.4氮化鋯鍍膜碳化鎢銑刀之銑切特性...................111 第八章 結論與未來研究方向 ..............................112 8.1 結論 ...........................................112 8.2 未來研究方向 ...................................116 參考文獻 ...............................................117 附錄A 印刷電路板製作流程 ...............................122 作者簡介 ...............................................124

    TPCA, PCB Mechanical Manufacturing, Taiwan Printed Circuit Association, Taipei, pp. 35-75 (2004).
    2. Deng, J. L., “Modeling of The GM Model of Grey System,” Essential Topics on Grey System Theory and Application, China Ocean Press, pp.40-53(1988).
    3. 鄧聚龍,灰色系統理論與應用,第37∼95頁,台北,高立,民國八十九年。
    4. Lin, Z. C. and W. S. Lin,, “Measurement point prediction of flatness geometric tolerance by using grey theory,” J. Int. Soc. for Precision Eng. and Nanotech., Vol. 25, pp. 171-184(2001).
    5. Hsu, C. C. and C. Y. Chen, “Application of improved grey prediction model for power demand forecasting,” Energy Conversion and Management, Vol. 44, pp. 2241-2249(2003).
    6. Chen, C.K. and T. L. Tien, Study on Prediction and Decision Making by Grey Theory, PH.D. Thesis, National Cheng Kung University, pp.38-55(1995).
    7. Taguchi, G, S. Konishi and Y. Wu, Quality Engineering Series, Vol. 1, Taguchi Methods, Research and Development, ASI, (1992).
    8. Phadke, M. S., Quality Engineering Using Robust Design, Prentice Hall, Ch. 3, (1989).
    9. 田口玄一、橫山巽子,品質設計的實驗計畫法,台北,中國生產力中心,第二章,民國八十四年。
    10. 李輝煌,田口方法-品質設計的原理實務,第87∼115頁,台北,高立,民國八十九年。
    11. Grant, E.L. and R. S. Leavenworth, Statistical Quality Control, McGrraw-HILL, Singapore, pp.68-99(1980).
    12. Oakland, J. S., Statistical Process Control, William Heinemann, London, pp. 72-112(1986).
    13. Mitra, A. T., Fundamentals of Quality Control and Improvement, 2nd ed., Prentice-Hall, New Jersey, pp.45-84(1998).
    14. Montgomery, D. C., Introduction to Statistical Quality Control, John Wiley & Sons, Inc. pp.114-134(2000).
    15. Box, G. E. and P. Kramer, “Statistical process monitoring and feedback adjustment-a discussion,” Technometrics, Vol.34, No.1, pp.251-267 (1992).
    16. Tlusty, J., Manufacturing Processes and Equipment, Prentice Hall, New Jersey, pp.458-463(1999).
    17. Shaw, Milton C., Metal Cutting Principle, Clarendon press, New York, Chapter 14(1984).
    18. Mishnaevsky, L. L., “Mathematical Modelling of Wear of Cemented Carbide Tools in Cutting Brittle Materials,” International Journal of Machine Tools & Manufacture, Vol. 35, No. 5, pp. 717-724(1995).
    19. Hung, N. P. and C. H. Zhong, “Cumulative tool wear in machining metal matrix composites Part 1: Modelling,” Journal of Materials Processing Technology, Vol. 58, pp.109-113(1996).
    20. 傅光華,切削刀具學,第55~85頁,台北,高立圖書,民國74年。
    21. Stahlberg, U. and H. Jonas, “A comparison between two wear models,” Journal of Materials Processing Technology, Vol. 87, p.223-229(1999).
    22. Huang Y. and T. G. Dawson, “Tool crater wear depth modeling in CBN hard turning,” Wear, Vol. 258, pp.1455-1461(2005).
    23. Wardany T. I. and M. A. Elbestawi, “Prediction of Tool Failure Rate in Turning Hardened Steels,” International Advanced Manufacturing Technology, Vol. 13, pp.1-16(1997).
    24. Dou S. S., Y. T. Du and W. X. Shi, “The Detection and Compensation of Tool Wear in Process,” Journal of Materials Processing Technology, Vol.48, pp.283-290(1995).
    25. Lim, G. H., “Tool-wear monitoring in machine turning, ” Journal of Materials Processing Technology, Vol. 51, pp. 25-36(1995).
    26. Schulz H. and T. Moriwaki, “High-Speed Machining”,Annals of the CIRP,Vol.41, p.637-641(1992).
    27. Smith S. and J. Tlusty, “Update on High-Speed Milling Dynamics,” J. of Eng. For Ind.,Vol.112, pp.142-149(1990).
    28. Paro, J., I. Nieminen and V. Kauppinen, “High-speed milling in tooling production,” Journal of Materials processing Technology, Vol.52, pp.27-32(1995).
    29. Dolinsek, S., S. Ekinovic and J. Kopac, “A contribution to the understanding of chip formation in high-speed cutting of hardened steel,” Journal of Materials Processing Technology, Vol.157-158, pp. 485-490 (2004).
    30. Nieminen, I., J. Paro and V. Kauppinen, “High Speed Milling of Advanced Materials,” Journal of Materials Processing Technology, Vol.56, pp.24-26(1996).
    31. Malyer, E. and A. Oztarhan, “Wear behavior of nitrogen implanted PVD-coated hard metal cutting inserts,” Surface and Coating Technology, Vol.196, pp.369-372(2005).
    32. Rech, J., J. L. Battaglia and A. Moisan, “Thermal influedce of cutting tool coatings,” Journal of Materials Processing Technology, Vol. 159, pp.119-124(2005).
    33. Toman M. G. and M. John, “Modelling the orthogonal machining process using coated cemented carbide cutting tools,” Journal of Materials Processing Technology, Vol. 118, pp.293-300(2001).
    34. Su, Y. L., S. H. Yao, C. S. Wei and C. T. Wu, “Analysis and design of a WC milling cutter with TiCN coating,” Wear, Vol. 215, pp.59-66(1998).
    35. Dai, M., K. Zhou, Z. Yuan, Q. Ding and Z. Fu, “The cutting performance of diamond and DLC-coated cutting tools,” Diamond and Related Materials, Vol. 9, pp.1753-1757(2000).
    36. Lahres, M., and G. Jorgensen, “Properties and dry cutting performance of diamond-coated tools,” Surface and Coating Technology, pp.505-513(1994).
    37. Kopac, J., “Influence of cutting material and coating on tool quality and tool life,” Journal of materials Processing Technology, Vol.78, pp95-103(1998).
    38. Vossen J. L. and W. Kerm, Thin Film Process, Academic Proc., pp. 134-156(1991).
    39. Westwood, W. D., Handbook of Plasma Processing Technology, Noyes Publication, Park Ridge, New Jersey, USA, pp.186-220(1990).
    40. Smith, D. L., Thin-Film Deposition Principles and Practice, McGraw-Hill Companies, pp.483-499(1999).
    41. Wang, Y. C., ”A Study of PVD coatings and die materials forextended die-casting die life,” Surface and Coating Technology, Vol.94-95, pp.60~63(1997).
    42. Meier, G., Z. Kocker and K.H. Habig, ”Influence of different Production parameters on the functional behavior of tools and parts after coating,” Surface and coating Technology, Vol.88, pp.294~304(1996).
    43. Donald M. M., Handbook of Physical Vapor Deposition (PVD) Processing, Westwood,N.J., Noyes Publication , pp.55-79 (1998).
    44. Jonsson, B. and S. Hogmark, Hardness Measurements of Thin Films, Thin Solid Films, VOL. 114, pp.257-269(1994).
    45. Gautier, C. and J. Machet, ”Study of the growth mechanisms of chromium nitride films deposited by vacuum ARC evaporation,” Thin Solid Films, Vol.295, pp.43~52(1997).
    46. 陳寶清,真空表面處理工學,第28∼47頁,表面工業雜誌社,民國八十一年。
    47. 金屬工業研究發展中心,金屬加工用刀具材料及處理技術手冊,第49∼68頁,高雄市,民國八十一年。
    48. Ohring, M., The Materials Science of Thin Films, Academic Press, UK, pp. 88~121(1992).
    49. Zhitomirsky, V. N., I. Grimberg, R. L. Boxman, N. A. Travitzky, S. Goldsmith and B. Z. Weiss, “Vacuum Arc Deposition and Microstructure of ZrN-Bases Coatings,” Surface and Coatings Technology, Vol.207, pp. 94-95(1997).
    50. Tavares, C. J., L. Rebouta, M. Andritschky and S. Ramos, “Mechanical characterisation of TiN/ZrN multi-layered coatings,” Journal of Materials Processing Technology, Vol. 92-93, , pp. 177-183(1999).
    51. Yotsuya, T., M. Yoshitake and T. Kodama, “Low-Temperature Thermometer Using Sputtered ZrNx Thin Film,” Cryogenics, Vol. 37, pp.817-822 (1998).
    52. Ramana, J.V.; Kumar, Sanjiv; David, Christopher; A.K. Ray and V.S. Raju, “Characterisation of zirconium nitride coatings prepared by DC magnetron sputtering,” Materials Letters, Volume: 43, Issue: 1-2, March, pp. 73-76 (2000).
    53. Tanabe, K., H. Asano, Y. Katoh and O. Michikami, “Properties of Superconducting ZrN Thin Films Deposited by DC Reactive Magnetron Sputtering ,” J. Appl. Phys., Vol. 26, No. 5, pp.570-576(1987).
    54. Milosev, I., H. H. Strehblow and B. Navinsel, “Comparison of TiN, ZrN and CrN Hard Nitride Coatings: Electrochemical and Thermal Oxidation,” Thin Solid Films, Vol.303, pp.246-254(1997).
    55. Nose, M., M. Zhou, E. Honbo, M. Yokota, and S. Saji, “Colorimetric Properties of ZrN and TiN Coatingd Prepared by DC Reactive Sputtering,” Surface and Coatings Technology, Vol. 142-144, pp.211-217(2001).
    56. Azevedo, S., “Charged particle with magnetic moment in the background of line topological defect,” Physics Letters A,Vol. 307, Issue: 1, pp. 65-68 (2003).
    57. 林啟發、馮明憲、戴寶通,電漿輔助化學氣相沉積之介電質在化學機械研磨中特性與製程整合之研究,碩士論文,國立交通大學材料科學與工程研究所,第45~51頁,民國八十五年。
    58. Elmustafa, A. A. and D. S. Stone, “Indentation size effect in polycrystalline F.C.C.metals,” Acta Materialia, Vol.50, pp.3641~3650(2002).
    59. Cheng, Y. T. and C.M. Cheng, “What is indentation hardness?,” Surface and Coatings Technology , Vol.133~134, pp.417~424(2000).
    60. Baker, S. P., “Between nanoindentation and scanning force microscopy: Measuring mechanical properties in the nanometer regime,” Thin Solid Films, Vol. 308-309, pp.289~296(1997).
    61. Bhushan, B., Handbook of micro/nanotribology, 2nd ed., CRC Press, BocaRaton, pp.34~78 (1999).
    62. 楊恆傑,直流磁控濺鍍鋯及氮化鋯薄膜性質結構與擴散組障層應用之研究,國立成功大學材料科學及工程系,碩士論文,第74~77頁,民國九十一年。

    QR CODE