簡易檢索 / 詳目顯示

研究生: 黃振興
Jhen-sing Huang
論文名稱: 股骨骨板之參數分析與最佳化設計
Parametric Analysis and Design Optimization of the Bone Plate of Femur
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 林晉
Jinn Lin
劉見賢
Chien-Hsien Liu
徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 96
中文關鍵詞: 股骨骨板動力加壓骨板鎖定式加壓骨板有限元素分析田口品質工程法交互作用
外文關鍵詞: Plate of femur, Dynamic compression plate, Locking compression plate, Finite element analysis, Taguchi method, Interaction
相關次數: 點閱:255下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 股骨骨板與骨螺絲系統為目前治療股骨骨折常見的內植入物之ㄧ,然而於臨床運用上,股骨骨板與骨螺絲系統最常見的失效模式為骨螺絲的破斷與骨板的破壞,但若植入物發生失效破壞的情況,常常導致病患骨折無法順利癒合,嚴重甚至發生二次骨折的情況。目前於股骨骨板的研究文獻中,大部分皆為臨床之案例報告與機械測試為主,本研究主要對骨板進行有限元素分析,以骨板分析結果之最大張應力與最大變形量為目標值,評估骨板之彎曲強度與形變程度。
    本研究首先以市售之動力加壓骨板為參考,簡化此參考骨板,以田口直交表為基準,使用SolidWork2008建構不同幾何尺寸之骨板,並根據ASTM美國試驗材料協會之骨板標準測試方法建構分析模型,將建構完成之實體模型以Parasolid格式轉入ANSYS Workbench 11分析軟體中,求解每一設計組合之最大張應力與最大變形量,並進行變異性分析(ANOVA),求得重要之設計參數及最佳化組合,並深入探討各設計參數間之交互作用。
    於本研究之參數化分析結果指出,影響股骨骨板之彎曲強度之最重要設計參數為骨板厚度,其次為骨板曲率;而骨板之形變程度則仍是受到骨板厚度影響最為明顯;而於各設計參數間之交互作用之探討,發現偏心間距(Eccentric length)與相鄰孔洞之距離(Distance between holes)存在較為明顯之交互作用,注意避免相鄰孔洞之距離過於接近且亦存在著偏心間距之組合,即可避免應力集中的效應。最後依照所求得之最佳化設計組合,建構一新型股骨骨板之3D實體圖。本研究期望可以幫助工程師設計出新的骨科植入物及幫助骨科醫生選擇適合的骨科植入物。


    The system of the bone plate and screws of the femur is one of the internal fixation for treat the femur fractures. In clinical application, the devices usually break from the bone plate or screws. The implant failure may also cause the postoperative fracture. From the literature reviews, most of them just discuss about the clinical case and the mechanical testing, so the purpose of this study focus on the bending strength and the stability of the bone plate by using Taguchi’s Method and Finite Element Analysis.
    The ranges of designed bone plates in this study were based on the commercial dynamic compression plate. According to the Taguchi orthogonal array and the ASTM standard testing method, the three-dimensional solid models were created by Solidworks 2008, and then transferred to ANSYS Workbench 11 by using parasolid format to simulate the maximum tensile stress and the maximum deformation of the bone plates. Analysis of the variance, ANOVA, was used to investigate the contributions of each design parameter, and also can get an optimal combination. The interactions between each design parameter were discussed in this study.
    The parameter analysis of this study indicates that thickness and curve of the bone plate are important factors for the bending strength, and the thickness is also the important parameter for the deformation analysis. The interactions between each designed parameter indicate that the eccentric length and distance between holes have more significant than the others. To avoid the combination of these two parameters, it can decrease the stress concentration. Finally, the optimal design is used to create the three-dimensional distal bone plate. This study could assist the engineers to design new orthopedics implants and help the surgeons to select the suitable orthopedics implants.

    中文摘要.....................................................................I 英文摘要.....................................................................II 誌 謝.....................................................................III 目 錄.....................................................................IV 符號索引................................................................... VIII 圖表索引....................................................................X 第一章 緒論.................................................................1 1.1 研究背景、動機與目的.................................................1 1.2 股骨的解剖學構造.....................................................3 1.3 股骨骨折與治療方式簡介...............................................5 1.4 股骨植入物之基本介紹.................................................7 1.4.1 骨板簡介...............................................................8 1.4.2 動態髖骨螺絲簡介......................................................10 1.4.3 迦瑪骨釘簡介..........................................................11 1.4.4 雙螺絲骨釘簡介........................................................13 1.5 文獻回顧............................................................15 1.5.1 有限元素分析應用於生物力學領域........................................15 1.5.2 田口參數分析之應用....................................................17 1.5.3 骨板之文獻回顧........................................................18 1.6 本文架構............................................................19 第二章 材料與方法..........................................................20 2.1 研究方法簡介........................................................20 2.2 有限元素法簡介......................................................20 2.2.1 有限元素法分析流程....................................................22 2.2.2 有限元素法之優點......................................................24 2.3 應用軟體介紹........................................................25 2.3.1 ANSYS Workbench軟體簡介...............................................25 2.3.2 SolidWorks軟體簡介....................................................26 2.4 田口品質工程法之簡介................................................26 2.4.1 各參數間之交互作用....................................................31 2.5 美國試驗材料協會(ASTM)與測試方法簡介................................34 第三章 股骨骨板之有限元素分析..............................................35 3.1 股骨骨板之有限元素分析流程..........................................35 3.1.1 股骨骨板模型之幾何建立................................................36 3.1.2 材料性質..............................................................41 3.1.3 網格與元素類型........................................................42 3.1.4 接觸問題..............................................................44 3.1.5 負載與邊界條件........................................................46 3.1.6 求解..................................................................48 3.1.7 分析結果與結果驗證....................................................48 3.2 收斂性分析..........................................................49 第四章 結果................................................................50 4.1 有限元素分析結果....................................................50 4.1.1 彎曲強度分析之結果....................................................50 4.1.2 骨板形變之分析結果....................................................57 4.2 收斂性分析結果......................................................60 4.3 田口參數化分析......................................................61 4.3.1 彎曲強度之參數化分析..................................................61 4.3.2 骨板形變之參數化分析..................................................65 4.3.3 各設計參數間之交互作用................................................69 第五章 綜合討論............................................................80 第六章 結論與未來展望......................................................87 6.1 結論................................................................87 6.2 未來展望............................................................89 參考文獻....................................................................90 作者簡介....................................................................93 附錄一 標準L25田口直交表..................................................94 附錄二 標準L27田口直交表..................................................95 授權書......................................................................96

    [1] Radford, P.J., M. Needoff, and J.K. Webb, "A Prospective Randomised Comparison of the Dynamic Hip Screw and the Gamma Locking Nail," J Bone Joint Surg, vol. 75B, No.5, pp. 789-793, (1993).
    [2] Deith L. Moore and Arthur F. Dalley,ANATOMY,Hagerstown,Lippincott Williams & Wilkins(2001).
    [3] 林 晉,鎖定式骨髓內釘之基礎科學與臨床應用,第135-149頁,台北,合記圖書出版社,民國93年(2004)。.
    [4] Rosenblum, S.F., J.D. Zuckerman, F.J. Kummer, and B.S. Tam, "A Biomechanical Evaluation of the Gamma Nail," J Bone Joint Surg, vol. 74B, pp. 352-357, (1992).
    [5] Sitthiseripratip, K., H.V. Oosterwyck, J.V. Sloten, B. Mahaisavariya, E.L.J. Bohez, J. Suwanprateeb, R.V. Audekercke, and P. Oris, "Finite Element Study of Trochanteric Gamma Nail for Trochanteric Fractrue," Medical Engineering & Physics, vol. 25, pp. 99-106, (2003).
    [6] 李光寶,雙螺絲骨釘之遲滯螺絲參數化分析與最佳設計 ,台灣科技大學機械工程系碩士論文,民國97年(2008)。.
    [7] Brekelmans, W., Poort, H., Slooff, T., "A New Method to Analysis the Mechanical Behavior of Skeletal Parts," Acta Orthop Scand 43, pp. 301-317, (1972).
    [8] Baleani, M., Viceconti, M., Muccini, R., and Ansaloni, M., "Endurance Verification of Custom-Made Hip Prostheses," International Journal of Fatigue, vol. 22, pp. 865-871, (2000).
    [9] Wang, C.J., Brown, C.J., Yettram, A.L., and Procter, P., "Intramedullary femoral nails: one or two lag screws? A preliminary study," Medical Engineering & Physics, vol. 22, pp. 613-624, (2000).
    [10] Chen, S.I., Lin, R.M., and Chang, C.H., "Biomechanical Investigation of Pedicle Screw-Vertebrae Complex: A Finite Element Approach Using Bonded and Contact Interface Conditions," Medical Engineering & Physics, vol. 25, pp. 275-282, (2003).
    [11] Hansson, S. and Werke, M., "The Implant Thread as a Retention Element in Cortical Bone: The Effect of Thread Size and Thread Profile: A Finite Element Study," Journal of Biomechanics, vol. 36, pp. 1247-1258, (2003).
    [12] Chen, W.P., Tai, C.L., Shih, C.H., Hsieh, P.H., Leou, M.C., and Lee, M.S., "Selection of Fixation Devices in Proximal Femur Rotational Osteotomy: Clinical Complications and Finite Element Analysis," Clinical Biomechanics, vol. 19, pp. 255-262, (2004).
    [13] Brown, C.J., Wang, C.J., Yettram, A.L., and Procter, P., "Intramedullary nails with two lag screws," Clinical Biomechanics, vol. 19, pp. 519-525, (2004).
    [14] 魏忠景,股骨近端骨折治療之有限元素分析與生物力學測試,台灣科技大學機械工程系碩士論文,民國95年(2006)。.
    [15] 吳宗曄,股骨截肢長度與骨腫瘤對人工關節之應力分析影響 ,台灣科技大學機械工程系碩士論文,民國96年(2007)。.
    [16] Yang, W.H. and Tarng, Y.S., "Design Optimization of Cutting Parameters for Turning Operations Based on the Taguchi Method," Journal of Materials Processing Technology, vol. 84, pp. 122-129, (1998).
    [17] Ghani, J.A., Choudhury, I.A., and Hassan, H.H., "Application of Taguchi Method in the Optimization of End Milling Parameters," Journal of Materials Processing Technology, vol. 145, pp. 84-92, (2004).
    [18] Fujihara, K., Huang, Z.M., Ramakrishna, S., Satknanantham, K., and Hamada, H., "Performance Study of Braided Carbon/PEEK Composite Compression Bone Plates," Biomaterials, vol. 24, pp. 2661-2667, (2003).
    [19] Ahmad, M., Nanda, R., Bajwa, A.S., Candal-Couto, J., Green, S., and Hui, A.C., "Biomechanical Testing of the Locking Compression Plate: When Does the Distance between Bone and Implant Significantly Reduce Construct Stability?," Injury-International Journal of the Care of the Injured, vol. 38, pp. 358-364, (2007).
    [20] Hasenboehler, E., Rikli, D., and Babst, R., "Locking Compression Plate with Minimally Invasive Plate Osteosynthesis in Diaphyseal and Distal Tibial Fracture: A Retrospective Study of 32 Patients," Injury-International Journal of the Care of the Injured, vol. 38, pp. 365-370, (2007).
    [21] Kanchanomai, C., Phiphobmongkol, V., and Muanjan, P., "Fatigue Failure of an Orthopedic Implant - A Locking Compression Plate," Engineering Failure Analysis, vol. 15, pp. 521-530, (2008).
    [22] Jewell, D.P.A., Gheduzzi, S., Mitchell, M.S., and Miles, A.W., "Locking Plates Increase the Strength of Dynamic Hip Screws," Injury-International Journal of the Care of the Injured, vol. 39, pp. 209-212, (2008).
    [23] 陳新郁、林政仁,有限元素分析 理論與應用 ANSYS,台北,高立圖書有限公司,民國90年(2001)。.
    [24] Fowlkes, W.Y. and Creveling, C.M., "Engineering Methods for Robust Production Design Using Taguchi Method in Technology and Product Development," Addison Wesley, Reading, (1995).
    [25] 林秀雄,田口方法與品質工程,新知企業管理顧問有限公司,民國80年(1991)。.
    [26] 朱光華 ,應用田口方法評量存開性動脈導管在主動脈造影之最佳調整參數,中臺科技大學放射科學研究所碩士論文,民國95年(2006)。.
    [27] 徐慶琪,骨螺絲之結構設計與生物力學分析,台灣科技大學機械工程系博士論文,民國94年(2005)。.
    [28] "Annual Book of ASTM Standards, Section 13. Medical Devices and Services," F382-99 (2005).
    [29] Keyak, J.H. and Skinner, H.B., "Three-Dimensional Finite Element Modelling of Bone: Effects of Element Size," Journal of Biomedical Engineering, vol. 14, pp. 483-489, (1992).
    [30] 黃建智,動態髖骨螺絲之生物力學分析 ,台灣科技大學機械工程系碩士論文,民國97年(2008)。.

    QR CODE