簡易檢索 / 詳目顯示

研究生: 蔡云禎
Yun-Chen Tsai
論文名稱: 改變由溶膠凝膠法製備碳陶瓷電極的表面潤濕性-用於改善產氫反應
Tunable Surface Wettability of Sol-gel derived carbon ceramic electrode for improved Hydrogen Evolution Reaction
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 陳崇賢
Chorng-Shyan Chern
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 94
中文關鍵詞: 碳陶瓷電極產氫硫化鉬
外文關鍵詞: carbon ceramic electrode, hydrogen evolution reaction, molybdenum sulfide
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用如碳陶瓷電極(CCE)之類的多孔材料電極,由於其獨特性質,如易於製造,高可調性和高表面積,近十年來已經有了很大的發展。多數研究著重在改變碳材、結構和用碳基電極來增加碳陶瓷電極中的導電網絡等等,但據我們所知,對CCE的改性表面性質的探討非常有限。

    在本研究中,介紹了由溶膠凝膠法製備的改性碳複合電極。在第一階段,這項工作的目的是優化由溶膠凝膠法製備的碳陶瓷電極的參數。 在第二階段,評估了將電催化劑沉積在電極上的顯著應用性。

    通過物理化學分析可發現通過調節前驅液组合可以容易地控制基材濕潤性及表面積。在水解和缩合過程中在表面形成的大量 Si-OH 官能基團是其親水性的主要原因。此外,親水碳陶瓷電極因為與電解液接觸完全所以電化學活性表面積比起疏水碳陶瓷電極來得大。並且親水碳陶瓷電極比疏水碳陶瓷電極具有較好的導電性及較低的電阻率,分別為 0.714 (Ω.cm)及 0.106 (Ω.cm),這也造成電化學阻抗譜 (EIS) 中電解質傳導阻抗(Rs)有所差異。

    為了證明改性 CCE 作為催化劑基材的潛在應用,將硫化鉬作為電催化劑加到 CCE 上並用作產氫反應(HER)的電極。最好的產氫表現為將硫化鉬沉積在親水碳陶瓷電極上,在-0.25 V vs. RHE 下電流密度達到 22 mAcm-2 且塔弗斜率為58 mV/dec。電催化劑也提供合理的穩定性,其活性超過六小時仍維持 70%。
    總結上述所有發現,可以合理地推斷此易於製造和易於擴展的改性 CCE 在該工作中可以容易地用作平板,金屬塗覆電極,盤電極,棒狀電極,及微電極基板。


    The construction of electrodes using porous materials such as carbon ceramic
    electrodes (CCE), has seen a great development since the last decade owing to its
    unique properties such as easy fabrication, high plasticity and high surface area.
    Significant efforts have been paid to change carbon material、structure and carbon-
    based electrodes used as conductive network in ceramic carbon electrodes, but study
    on modification surface properties of CCE, to our best knowledge, is very limited.

    In the present study, new sol-gel route for modifying carbon composite electrodes
    introduced. The aim of this work was, in a first stage, to optimize parameters affecting both, the sol-gel process and the electrode preparation. In a second stage, the usefulness of developed electrodes applied to the deposition of electrocatalyst was also evaluated.

    By thorough physicochemical analysis, it was found that by substrate wettability as well as surface area, can be easily controlled by tuning the precursor composition. Large number of surface Si-OH functional groups formed during the hydrolysis and condensation process were found to be the main reason for its hydrophilic property. In addition, the electrochemical active surface area of the hydrophilic carbon ceramic electrode is larger than the hydrophobic carbon ceramic electrode because the good contact of the hydrophilic carbon ceramic electrode with the electrolyte. Moreover, the hydrophilic carbon ceramic electrode has better conductivity and lower resistivity, which causes a lower electrolyte conduction resistance (Rs) value in the electrochemical impedance spectroscopy (EIS).

    For demonstration the potential application of modified CCE as catalyst supporter, molybdenum sulfide as a model electrocatalyst was loaded onto CCE and used as electrode for hydrogen evolution reaction (HER). The best HER performanceis achieved for the MoSx deposited on hydrophilic CCE, which can reach a catalytic current density of 22 mAcm-2 (at -0.25 V vs. RHE) with Tafel slope value of 58 mV/dec. The catalyst offers reasonable stability in which activity was maintained approximately 70% for over 6 hours.

    Considering all aboved findings, it is reasonable to conclude modified CCE obtained from easy-handle and scalable procedure in this work could be readily employed as substrate for flat plates, metal-coated electrodes, monolithic rods and disks, and even microelectrodes.

    摘要 I ABSTRACT II 目錄 IV 圖目錄 VII 表目錄 XIV 第一章 緒論 1-1 研究動機 1-2 研究目的 第二章 文獻回顧 2-1碳材電極 2-2碳陶瓷電極製備方法:溶膠-凝膠法 2-2.1 溶膠-凝膠法之簡介 2-2.2 溶膠-凝膠法之原理 2-2.3 溶膠-凝膠法之應用 2-3基材性質 2-3.1 基材親疏水性 2-3.2 界面現象 2-4氫氣的製備方法 2-5水分解產氫 2-6產氫觸媒 2-6.1 硫化鉬 第三章 實驗設備及方法 3-1 實驗架構. 3-2 實驗與分析儀器 3-3 實驗藥品與材料 3-4 實驗步驟 3-4.1 製備疏水碳陶瓷電極 3-4.2 製備親水碳陶瓷電極 3-4.3 硫化鉬合成 3-4.4 電化學參數 3-5 電化學基本原理 3-5.1 電解水產氫 3-5.2 法拉第定律 3-5.3 過電位 3-5.4 Tafel 方程式 3-5.5 電化學阻抗譜法(Electrochemistry Impedance Spectroscopy, EIS) 3-5.6 循環伏安法(CV) 3-6 儀器原理介紹 3-6.1 X 光繞射儀 (X-ray Diffractometer, XRD) 3-6.2 場發射掃描式電子顯微鏡 (field emission scanning electron microscopy, FE-SEM) 3-6.3 X 射線光電子能譜儀 (X-ray Photoelectron Spectroscope, XPS) 3-6.4 傅立葉紅外光譜 (FTIR) 3-6.5 接觸角測量/水滴接觸角量測系統(Contact Angle, CA) 3-6.6 四點探針(Four-point Probe) 第四章 實驗結果與討論 4-1 基材特性分析 4-1.1 接觸角測量/水滴接觸角量測系統(Contact Angle, CA) 4-1.2 傅立葉紅外光譜 (FTIR) 4-1.3 電化學活性表面積 (Electrochemical Surface Area, ESA) 4-1.4 電阻率(Resistivity) 4-2 硫化鉬觸媒應用於親水碳陶瓷電極之電解水產氫反應 4-2.1 X 光繞射圖譜分析 (XRD) 4-2.2 場效發射式掃描電子顯微鏡 (Field-Emission Scanning Electron Microscope, FE-SEM) 4-2.3 X 光電子能譜分析(X-Ray Photoelectron Spectroscopy, XPS) 4-2.4 不同觸媒裂解溫度之電化學表現 4-2.5 不同前驅物量之電化學表現 4-2.6 不同比例混和溶劑之電化學表現 4-2.7 比較硫化鉬觸媒於親水、疏水碳陶瓷電極之電化學表現 4-2.8 Turnover Frequency (TOF) 4-2.9 計時安培分析 (Chrono Amperometry) 4-2.10 X 光電子能譜分析(X-Ray Photoelectron Spectroscopy, XPS) 4-2.11 氣相層析儀(gas chromatograph,GC) 4-2.12 硫化鉬觸媒於不同電極之電化學產氫反應比較 第五章 結論 第六章 參考文獻 第七章 附錄

    [1] J. Węgiel, B. Burnat, S.J.D. Skrzypek, A graphene oxide modified carbon
    ceramic electrode for voltammetric determination of gallic acid, Related Materials 88 (2018) 137-143.
    [2] O.P.J.U.N.P. Hugh, Handbook of carbon, graphite, diamond and fullerenes:
    properties, processing and applications, Noyes Publication 63 (1993).
    [3] J.F. Watts, J.J.A.I.t.S.A.b.X. Wolstenholme, b.J.F.W. AES, John Wolstenholme,
    pp. 224. ISBN 0-470-84713-1. Wiley-VCH, May . An introduction to surface analysis
    by XPS and AES, (2003) 224.
    [4] J.J.E.A.I.J.D.t.F. Wang, P.A.o. Electroanalysis, Carbon‐nanotube based
    electrochemical biosensors: A review, Electroanalysis: An International Journal
    Devoted to Fundamental 17(1) (2005) 7-14.
    [5] R.H. Baughman, A.A. Zakhidov, W.A.J.s. De Heer, Carbon nanotubes--the route toward applications, Science 297(5582) (2002) 787-792.
    [6] X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Chemically derived, ultrasmooth
    graphene nanoribbon semiconductors, Science 319(5867) (2008) 1229-32.
    [7] X. Wang, L. Zhi, K. Mullen, Transparent, conductive graphene electrodes for
    dye-sensitized solar cells, Nano Lett 8(1) (2008) 323-7.
    [8] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth,
    The structure of suspended graphene sheets, Nature 446(7131) (2007) 60-3.
    [9] P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A.
    Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov,
    Graphene-based liquid crystal device, Nano Lett 8(6) (2008) 1704-8.
    [10] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials,
    Nature 442(7100) (2006) 282-6.
    [11] K. Sakai, S. Iwamura, R. Sumida, I. Ogino, S.R.J.A.O. Mukai, Carbon Paper with a High Surface Area Prepared from Carbon Nanofibers Obtained through the Liquid Pulse Injection Technique, ACS Omega 3(1) (2018) 691-697.
    [12] L. Yang, S. Cheng, Y. Ding, X. Zhu, Z.L. Wang, M. Liu, Hierarchical network
    architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity
    pseudocapacitors, Nano Lett 12(1) (2012) 321-5.
    [13] C.-J. Yuan, C.-L. Wang, T.Y. Wu, K.-C. Hwang, W.-C.J.B. Chao, Bioelectronics, Fabrication of a carbon fiber paper as the electrode and its application toward developing a sensitive unmediated amperometric biosensor, Biosensors 26(6) (2011) 2858-2863.
    [14] J. Zhang, J. Wu, H. Zhang, PEM fuel cell testing and diagnosis, Newnes2013.
    [15] A.B. Laursen, P.C. Vesborg, I. Chorkendorff, A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability, Chem Commun (Camb) 49(43) (2013) 4965-7.
    [16] O. Miyawaki, L.B.J.B.e.B.A.-G.S. Wingard Jr, Electrochemical and glucose
    oxidase coenzyme activity of flavin adenine dinucleotide covalently attached to glassy carbon at the adenine amino group, Biochimica et Biophysica Acta -General Subjects 838(1) (1985) 60-68.
    [17] P.J.P.M. Harris, Fullerene-related structure of commercial glassy carbons,
    Philosophical Magazine 84(29) (2004) 3159-3167.
    [18] A. Dekanski, J. Stevanović, R. Stevanović, B.Ž. Nikolić, V.M.J.C. Jovanović,
    Glassy carbon electrodes: I. Characterization and electrochemical activation, Carbon
    39(8) (2001) 1195-1205.
    [19] J.-P. Randin, E.J.J.o.E.C. Yeager, I. Electrochemistry, Differential capacitance study on the edge orientation of pyrolytic graphite and glassy carbon electrodes, Journal of Electroanalytical Chemistry 58(2) (1975) 313-322.
    [20] P.J.J.o.e.c. Upadhyay, i. electrochemistry, A simple procedure for activating a
    glassy carbon electrode, Journal of electroanalytical chemistry 271(1-2) (1989) 339-
    343.
    [21] M. Poon, R.L.J.A.C. McCreery, In situ laser activation of glassy carbon
    electrodes, Analytical Chemistry 58(13) (1986) 2745-2750.
    [22] M. Tsionsky, G. Gun, V. Glezer, O.J.A.C. Lev, Sol-gel-derived ceramic-
    carbon composite electrodes: introduction and scope of applications, Analytical
    Chemistry 66(10) (1994) 1747-1753.
    [23] O. Lev, Z. Wu, S. Bharathi, V. Glezer, A. Modestov, J. Gun, L. Rabinovich,
    S.J.C.o.M. Sampath, Sol− gel materials in electrochemistry, Chemistry of Materials
    9(11) (1997) 2354-2375.
    [24] G. Oskam, P.C.J.T.J.o.P.C.B. Searson, Sol− Gel Synthesis and Characterization of Carbon/Ceramic Composite Electrodes, The Journal of Physical Chemistry B 102(14) (1998) 2464-2468.
    [25] L. Rabinovich, O. Lev, Sol-Gel Derived Composite Ceramic Carbon Electrodes, 13(4) (2001) 265-275.
    [26] A. Salimi, R.J.E.A.I.J.D.t.F. Hallaj, P.A.o. Electroanalysis, Adsorption and
    reactivity of chlorogenic acid at a hydrophobic carbon ceramic composite electrode:
    application for the amperometric detection of hydrazine, Electroanalysis: An
    International Journal Devoted to Fundamental 16(23) (2004) 1964-1971.
    [27] J. Wang, P.V. Pamidi, Sol-gel-derived gold composite electrodes, Anal Chem
    69(21) (1997) 4490-4.
    [28] K. Gong, M. Zhang, Y. Yan, L. Su, L. Mao, S. Xiong, Y. Chen, Sol-gel-derived
    ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and
    potential electrochemical applications, Anal Chem 76(21) (2004) 6500-5.
    [29] E. Rozniecka, G. Shul, J. Sirieix-Plenet, L. Gaillon, M.J.E.c. Opallo,
    Electroactive ceramic carbon electrode modified with ionic liquid, Electrochemistry
    communications 7(3) (2005) 299-304.
    [30] E. Habibi, H.J.i.j.o.h.e. Razmi, Glycerol electrooxidation on Pd, Pt and Au
    nanoparticles supported on carbon ceramic electrode in alkaline media, international
    journal of hydrogen energy 37(22) (2012) 16800-16809.
    [31] A. Rahim, Z.U. Rehman, S. Mir, N. Muhammad, F. Rehman, M.H. Nawaz, M. Yaqub, S.A. Siddiqi, A.A.J.J.o.M.L. Chaudhry, A non-enzymatic glucose sensor based on CuO-nanostructure modified carbon ceramic electrode, Journal of Molecular Liquids 248 (2017) 425-431.
    [32] Q. Sheng, H. Yu, J.J.J.o.E.C. Zheng, Sol–gel derived terbium hexacyanoferrate modified carbon ceramic electrode: Electrochemical behavior and its electrocatalytical oxidation of ascorbic acid, Journal of Electroanalytical Chemistry 606(1) (2007) 39-46.
    [33] A. Salimi, M.J.E.C. Roushani, Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol–gel dispersed renewable carbon ceramic electrode, Electrochemistry Communications 7(9) (2005) 879-887.
    [34] R.K. Iler, The colloid chemistry of silica and silicates, LWW1955.
    [35] 張天益, 利用溶膠-凝膠法製備鋯鈦酸鉛陶瓷塊材與薄膜之研究, 材料科學及工程學系碩博士班, 國立成功大學, 台南市, 2007, p. 159.
    [36] H. Jiang, X.-C. Yuan, Y. Zhou, Y. Chan, Y.J.O.c. Lam, Single-step fabrication
    of diffraction gratings on hybrid sol–gel glass using holographic interference
    lithography, Optics communications 185(1-3) (2000) 19-24.
    [37] 陳威廷, 以溶膠-凝膠法製備具光聚合能力之二氧化矽及其應用於太陽能集光罩之特性分析, 材料與光電科學學系研究所, 國立中山大學, 高雄市, 2014, p. 72.
    [38] M. Nogami, Y.J.J.o.N.-C.S. Moriya, Glass formation through hydrolysis of Si
    (OC2H5) 4 with NH4OH and HCl solution, Journal of Non-Crystalline Solids 37(2)
    (1980) 191-201.
    [39] A.C. Pierre, Introduction to sol-gel processing, Springer Science & Business
    Media2013.
    [40] J. Zhang, R. Guan, X.J.J.o.A. Zhang, Compounds, Synthesis and
    characterization of sol–gel hydroxyapatite coatings deposited on porous NiTi alloys,
    Journal of Alloys 509(13) (2011) 4643-4648.
    [41] A.E. Danks, S.R. Hall, Z.J.M.H. Schnepp, The evolution of ‘sol–gel’chemistry as a technique for materials synthesis, Materials Horizons 3(2) (2016)
    91-112.
    [42] D.J.S.E.M. Chen, S. Cells, Anti-reflection (AR) coatings made by sol–gel
    processes: a review, Solar Energy Materials 68(3-4) (2001) 313-336.
    [43] R. Prado, G. Beobide, A. Marcaide, J. Goikoetxea, A.J.S.E.M. Aranzabe, S. Cells, Development of multifunctional sol–gel coatings: Anti-reflection coatings with
    enhanced self-cleaning capacity, Solar Energy Materials 94(6) (2010) 1081-1088.
    [44] R. Li, A.E. Clark, L.L. Hench, An investigation of bioactive glass powders by
    sol-gel processing, J Appl Biomater 2(4) (1991) 231-9.
    [45] P. Sepulveda, J.R. Jones, L.L. Hench, In vitro dissolution of melt-derived
    45S5 and sol-gel derived 58S bioactive glasses, J Biomed Mater Res 61(2) (2002) 301-
    11.
    [46] A. Dehghanghadikolaei, J. Ansary, R.J.P.o.t.N.R.S. Ghoreishi, Sol-gel process
    applications: A mini-review, Proceedings of the Nature Research Society 2(1) (2018)
    02008.
    [47] D.R. Uhlmann, T. Suratwala, K. Davidson, J. Boulton, G.J.J.o.N.-C.S.
    Teowee, Sol—gel derived coatings on glass, Journal of Non-Crystalline Solids 218
    (1997) 113-122.
    [48] D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, J.J.J.o.B.M.R.A.O.J.o.T.S.f.B. Breme, T.J.S.f. Biomaterials, Preparation of TiO2 layers
    on cp‐Ti and Ti6Al4V by thermal and anodic oxidation and by sol‐gel coating
    techniques and their characterization, Journal of Biomedical Materials Research 59(1)(2002) 18-28.
    [49] A.A. Tracton, Coatings technology handbook, CRC press2005.
    [50] O. Lev, M. Tsionsky, L. Rabinovich, V. Glezer, S. Sampath, I. Pankratov,
    J.J.A.C. Gun, Organically modified sol-gel sensors, Analytical Chemistry 67(1) (1995)22A-30A.
    [51] U. Dusek, G. Frank, L. Hildebrandt, J. Curtius, J. Schneider, S. Walter, D.
    Chand, F. Drewnick, S. Hings, D.J.S. Jung, Size matters more than chemistry for cloud-nucleating ability of aerosol particles, Science 312(5778) (2006) 1375-1378.
    [52] L. Wang, B. Peng, Z. Su, Tunable Wettability and Rewritable Wettability
    Gradient from Superhydrophilicity to Superhydrophobicity, Langmuir 26(14) (2010)
    12203-12208.
    [53] A.S. Topçu Kaya, U. Cengiz, Fabrication and application of superhydrophilic
    antifog surface by sol-gel method, Progress in Organic Coatings 126 (2019) 75-82.
    [54] S. Pan, R. Guo, W. Xu, Photoresponsive superhydrophobic surfaces for
    effective wetting control, Soft Matter 10(45) (2014) 9187-9192.
    [55] B. Rotenberg, A.J. Patel, D.J.J.o.t.A.C.S. Chandler, Molecular explanation for
    why talc surfaces can be both hydrophilic and hydrophobic, Journal of the American
    Chemical Society 133(50) (2011) 20521-20527.
    [56] J.A. von Fraunhofer, Adhesion and cohesion, International journal of
    dentistry 2012 (2012) 951324.
    [57] J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies, Catalysis Today 139(4) (2009) 244-260.
    [58] D.R. Palo, R.A. Dagle, J.D. Holladay, Methanol Steam Reforming for Hydrogen Production, Chemical Reviews 107(10) (2007) 3992-4021.
    [59] H.-H. Huang, 電解水產氫中極化作用之分析與研究, National Central University, 2013.
    [60] S. Manish, R. Banerjee, Comparison of biohydrogen production processes,
    International Journal of Hydrogen Energy 33(1) (2008) 279-286.
    [61] A.J.I.J.o.H.E. Eftekhari, Electrocatalysts for hydrogen evolution reaction,
    nternational Journal of Hydrogen Energy 42(16) (2017) 11053-11077.
    [62] T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, Science 317(5834) (2007) 100-2.
    [63] T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I.J.s.
    Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts, 317(5834) (2007) 100-102.
    [64] Q. Ding, B. Song, P. Xu, S. Jin, Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds,
    Chem 1(5) (2016) 699-726.
    [65] D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, Y. Cui, Synthesis
    of MoS2 and MoSe2 films with vertically aligned layers, Nano Lett 13(3) (2013) 1341-
    7.
    [66] J. Kibsgaard, Z. Chen, B.N. Reinecke, T.F.J.N.m. Jaramillo, Engineering the
    surface structure of MoS 2 to preferentially expose active edge sites for electrocatalysis, Nature materials 11(11) (2012) 963.
    [67] M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced
    hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets, J
    Am Chem Soc 135(28) (2013) 10274-7.
    [68] H. Wang, Z. Lu, S. Xu, D. Kong, J.J. Cha, G. Zheng, P.C. Hsu, K. Yan, D.
    Bradshaw, F.B. Prinz, Y. Cui, Electrochemical tuning of vertically aligned MoS2
    nanofilms and its application in improving hydrogen evolution reaction, Proc. Natl.
    Acad. Sci. U. S. A. 110(49) (2013) 19701-6.
    [69] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown
    on graphene: an advanced catalyst for the hydrogen evolution reaction, J Am Chem Soc
    133(19) (2011) 7296-9.
    [70] Y.H. Chang, C.T. Lin, T.Y. Chen, C.L. Hsu, Y.H. Lee, W. Zhang, K.H. Wei, L.J.J.A.m. Li, Highly efficient electrocatalytic hydrogen production by MoSx grown
    on graphene‐protected 3D Ni foams, Advanced materials 25(5) (2013) 756-760.
    [71] X. Zhang, F. Meng, S. Mao, Q. Ding, M.J. Shearer, M.S. Faber, J. Chen, R.J.
    Hamers, S.J.E. Jin, E. Science, Amorphous MoS x Cl y electrocatalyst supported by
    vertical graphene for efficient electrochemical and photoelectrochemical hydrogen
    generation, Energy 8(3) (2015) 862-868.
    [72] Q. Ding, J. Zhai, M. Cabán‐Acevedo, M.J. Shearer, L. Li, H.C. Chang, M.L.
    Tsai, D. Ma, X. Zhang, R.J.J.A.M. Hamers, Designing Efficient Solar‐Driven Hydrogen
    Evolution Photocathodes Using Semitransparent MoQxCly (Q= S, Se) Catalysts on Si
    Micropyramids, Advanced Materials 27(41) (2015) 6511-6518.
    [73] C.G. Morales-Guio, X.J.A.o.c.r. Hu, Amorphous molybdenum sulfides as
    hydrogen evolution catalysts, Accounts of chemical research 47(8) (2014) 2671-2681.
    [74] M. Saczek‐Maj, M.J.E.A.I.J.D.t.F. Opallo, P.A.o. Electroanalysis,
    Electroactive Ceramic Carbon Electrode Impregnated with n‐Alkanes, Electroanalysis:
    An International Journal Devoted to Fundamental 14(15‐16) (2002) 1060-1066.
    [75] X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water
    splitting, Chemical Society Reviews 44(15) (2015) 5148-5180.
    [76] P.-S. Huang, 電解水產氫效率之參數分析, National Central University, 2008.
    [77] Z. Chen, D. Cummins, B.N. Reinecke, E. Clark, M.K. Sunkara, T.F. Jaramillo,
    Core–shell MoO3–MoS2 Nanowires for Hydrogen Evolution: A Functional Design for
    Electrocatalytic Materials, Nano Letters 11(10) (2011) 4168-4175.
    [78] V. Gau, S.-C. Ma, H. Wang, J. Tsukuda, J. Kibler, D.A.J.M. Haake,
    Electrochemical molecular analysis without nucleic acid amplification, Methods 37(1)
    (2005) 73-83.
    [79] M. Zaib, M.M.J.I.J.E.S. Athar, Electrochemical evaluation of phanerocheaete
    chrysosporium based carbon paste electrode with potassium ferricyanide redox system,
    Int. J. Electrochem. Sci 10(8) (2015) 6690-6702.
    [80] P. Van der Heide, X-Ray photoelectron spectroscopy, Wiley Online Library2011.
    [81] Y. Jusman, S.C. Ng, N.A. Abu Osman, Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided
    screening system based on FE-SEM/EDX, ScientificWorldJournal 2014 (2014) 289817.
    [82] Y. Yuan, T.R. Lee, Contact angle and wetting properties, Surface science
    techniques, Springer2013, pp. 3-34.
    [83] M.L. Módolo, S.R. Valandro, C.A. Pessoa, S.T.J.E.A. Fujiwara, Carbon
    ceramic electrodes obtained by basic catalysis of sol–gel process, Electrochimica Acta 112 (2013) 783-790.
    [84] E.J. Nassar, Y. Messaddeq, S.J.L.J.Q.N. Ribeiro, Influência da catálise ácida
    e básica na preparação da sílica funcionalizada pelo método sol-gel, Química Nova
    (2002) 27-31.
    [85] T.-Y. Chen, Y.-H. Chang, C.-L. Hsu, K.-H. Wei, C.-Y. Chiang, L.-J.J.i.j.o.h.e.
    Li, Comparative study on MoS2 and WS2 for electrocatalytic water splitting,
    international journal of hydrogen energy 38(28) (2013) 12302-12309.
    [86] H. Wang, P. Skeldon, G.J.J.o.m.s. Thompson, Thermogravimetric–differential
    thermal analysis of the solid-state decomposition of ammonium tetrathiomolybdate
    during heating in argon, Journal of materials science 33(12) (1998) 3079-3083.
    [87] Z. Wu, C. Tang, P. Zhou, Z. Liu, Y. Xu, D. Wang, B.J.J.o.M.C.A. Fang,
    Enhanced hydrogen evolution catalysis from osmotically swollen ammoniated MoS 2,
    Journal of Materials Chemistry A 3(24) (2015) 13050-13056.
    [88] C.-H. Lin, C.-H. Tsai, F.-G. Tseng, Y.-Y. Yu, H.-C. Wu, C.-K.J.N.r.l. Hsieh,
    Low-temperature thermally reduced molybdenum disulfide as a Pt-free counter
    electrode for dye-sensitized solar cells, Nanoscale research letters 10(1) (2015) 446.
    [89] D. Merki, S. Fierro, H. Vrubel, X.J.C.S. Hu, Amorphous molybdenum sulfide
    films as catalysts for electrochemical hydrogen production in water, Chemical Science 2(7) (2011) 1262-1267.
    [90] Y.W. Chen, S.Y. Lin, C.Y. Chiang, Molybdenum Sulfide for Hydrogen
    Evolution Reaction: The Importance of Solution Dynamic Wetting Behavior in The
    Drying Process, Langmuir 33(19) (2017) 4638-4646.
    [91] M. Kleiman, K.A. Ryu, A.P.J.M.C. Esser‐Kahn, Physics, Determination of
    Factors Influencing the Wet Etching of Polydimethylsiloxane Using Tetra‐n‐
    butylammonium Fluoride, Macromolecular Chemistry 217(2) (2016) 284-291.
    [92] R. Bose, S.K. Balasingam, S. Shin, Z. Jin, D.H. Kwon, Y. Jun, Y.-S. Min,
    Importance of Hydrophilic Pretreatment in the Hydrothermal Growth of Amorphous
    Molybdenum Sulfide for Hydrogen Evolution Catalysis, Langmuir 31(18) (2015) 5220-
    5227.
    [93] Y. Yan, X. Ge, Z. Liu, J.-Y. Wang, J.-M. Lee, X.J.N. Wang, Facile synthesis
    of low crystalline MoS 2 nanosheet-coated CNTs for enhanced hydrogen evolution
    reaction, Nanoscale research letters 5(17) (2013) 7768-7771.
    [94] J.D. Benck, Z. Chen, L.Y. Kuritzky, A.J. Forman, T.F.J.A.C. Jaramillo,
    Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production:
    insights into the origin of their catalytic activity, Acs Catalysis 2(9) (2012) 1916-1923.

    無法下載圖示 全文公開日期 2024/08/19 (校內網路)
    全文公開日期 2024/08/19 (校外網路)
    全文公開日期 2024/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE