簡易檢索 / 詳目顯示

研究生: 郭娜蓉
Na-Jung Kuo
論文名稱: 析氫觸媒 FeS2-PAN 新合成技術
Novel approaches to Synthesize FeS2-PAN Electrocatalyst for Hydrogen Evolution Reaction
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing Joe Hwang
口試委員: 王丞浩
Chen-Hao Wan
黃炳照
Bing Joe Hwang
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 90
中文關鍵詞: 陰極觸媒電化學合成法氫氣析出反應硫-聚丙烯腈複合材料奈米材料二硫化鐵
外文關鍵詞: Cathode catalyst, Electrochemical method, Hydrogen Evolution Reaction, sulfide-polyacrylonitrile Composite, Nanomaterial, FeS2
相關次數: 點閱:310下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前,以鉑 (Pt) 被認為是 HER 最有效的觸媒。但是,豐度低、成本高,限制了它的廣泛應用性。
    在此領域中,研究出最佳替代 Pt 的產氫觸媒是最吸引人的題目。近期研究發現過渡金屬硫族化合物可作為 HER 的貴金屬催化劑的替代物。然而,過渡金屬二硫族化物的不良導電性可能限制其 HER 性能。
    利用電化學方法,通過簡易且低成本的方法,合成新型硫化聚丙烯腈衍生的 FeS2-PAN 複合物。然而在電化學反應過程中,如供給的電壓大小,會造成硫化鐵形成不同形態,進而影響硫化鐵的產氫效率;經過表徵、電化學分析和轉換率 (turn over frequency, TOF) 的計算,顯示 FeS2-PAN 電催化劑有 HER 活性的潛力。


    Currently, Pt-based materials are regarded as the most efficient electrocatalysts for HER. However, the low abundance and high cost limit their widespread applications. Providing a promising replacement to the Pt-based electrocatalysts became an exciting issue in this field.

    Recently, transition metals chalcogenides had been studied as an alternative to replace the precious metal catalysts for HER. However, poor conductivity for transition metal dichalcogenides may limit its HER performance.

    In this study, conductive polyacrylonitrile was first used and its sulfurized derivative (S-PAN) was applied as the precursor. Due to different valence state of sulfur, various preparation and electrochemical conditions were investigated to produce sulfurized polyacrylonitrile derived FeS2-PAN composite.

    Novel sulfurized polyacrylonitrile derived FeS2-PAN composite has been proposed and synthesized by electrochemical approaches. After structural and electrochemical characterizations, calculated turnover frequency, as-prepared FeS2-PAN electrocatalyst has shown promising HER activities.

    摘要 ABSTRACT 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 水分解原理 1.2.1 電解水析氫反應 (HER) 機制 第二章 文獻回顧 2.1 硫-聚丙烯腈複合物(S-PAN) 2.2 非貴金屬電催化析氫觸媒系統之研究現況 2.2.1 過渡金屬硫化物 2.2.2 非晶結構二硫化鉬 (MoS2) 2.2.3 二硫化鐵 (FeS2) 2.3 研究動機與目的 第三章 實驗設備與方法 3.1 實驗設備 3.2 實驗藥品 3.3 實驗步驟 3.3.1 合成的硫-聚丙烯腈 (S-PAN) 基材之合成 3.3.2 工作電極製作 3.3.2.1 電極製備:導電玻碳滴上SPAN 3.3.2.2電極製備:S-PAN 塗佈在碳紙上 3.3.2.3電極製備:滴 S-PAN漿料在碳紙上 3.4 電化學反應 3.5 儀器原理與材料鑑定 3.5.1 掃描式電子顯微鏡 (SEM) 3.5.2 能量分散光譜儀 (EDS) 3.5.3 感應偶合電漿光譜儀 (ICP-AES) 3.5.4 熱重分析儀 (TGA) 3.5.5 X射線繞射儀 (XRD) 3.5.6 四點探針導電度量測儀 (Four-Point Probe system) 3.5.7 電化學原理 3.4.6.1循環伏安法 (Cyclic voltammetry) 3.4.6.2極化曲線 (Polarization curve) 3.4.6.3旋轉盤電極 (Rotating Disc Electrode,RDE) 第四章 結果與討論 4.1 電化學合成的可行性試驗 4.2 電極製作 4.2.1 漿料塗佈法 4.2.2 包覆碳紙法 4.2.1.1 溶劑最適化 4.2.1.2 製程最適化 4.3 電化學合成最適化 4.3.1 電解液最適化 4.3.2 持壓電壓最佳化 4.3.3 導電碳材的添加 4.3.4 材料鑑定 第五章 結論 第六章 未來展望 第七章 參考文獻

    catalysts for water splitting. Chem Soc Rev, 2015. 44(15): p. 5148-80.
    2. Peng, H.J., J.Q. Huang, X.B. Cheng, and Q. Zhang, Review on High‐Loading and High‐Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2017. 7(24): p. 1700260.
    3. Wei, S., L. Ma, K.E. Hendrickson, Z. Tu, and L.A. Archer, Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. J Am Chem Soc, 2015. 137(37): p. 12143-52.
    4. Faber, M.S., M.A. Lukowski, Q. Ding, N.S. Kaiser, and S. Jin, Earth-Abundant Metal Pyrites (FeS2, CoS2, NiS2, and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis. J Phys Chem C Nanomater Interfaces, 2014. 118(37): p. 21347-21356.
    5. Tang, C., Z. Pu, Q. Liu, A.M. Asiri, and X. Sun, NiS2 nanosheets array grown on carbon cloth as an efficient 3D hydrogen evolution cathode. Electrochimica Acta, 2015. 153: p. 508-514.
    6. Staszak-Jirkovský, J., Christos D. Malliakas, Pietro P. Lopes, N. Danilovic, Subrahmanyam S. Kota, K.-C. Chang, B. Genorio, D. Strmcnik, Vojislav R. Stamenkovic, M.G. Kanatzidis, and N.M. Markovic, Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nature Materials, 2015. 15: p. 197.
    7. Lukowski, M.A., A.S. Daniel, F. Meng, A. Forticaux, L. Li, and S. Jin, Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. Journal of the American Chemical Society, 2013. 135(28): p. 10274-10277.
    8. Deng, Z.H., L. Li, W. Ding, K. Xiong, and Z.D. Wei, Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction. Chem Commun (Camb), 2015. 51(10): p. 1893-6.
    9. Lauritsen, J.V., M.V. Bollinger, E. Lægsgaard, K.W. Jacobsen, J.K. Nørskov, B.S. Clausen, H. Topsøe, and F. Besenbacher, Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. Journal of Catalysis, 2004. 221(2): p. 510-522.
    10. Jaramillo, T.F., K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, and I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. science, 2007. 317(5834): p. 100-102.
    11. Hinnemann, B., P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, and J.K. Nørskov, Biomimetic Hydrogen Evolution:  MoS2 Nanoparticles as Catalyst for Hydrogen Evolution. Journal of the American Chemical Society, 2005. 127(15): p. 5308-5309.
    12. Bose, R., S.K. Balasingam, S. Shin, Z. Jin, D.H. Kwon, Y. Jun, and Y.S. Min, Importance of hydrophilic pretreatment in the hydrothermal growth of amorphous molybdenum sulfide for hydrogen evolution catalysis. Langmuir, 2015. 31(18): p. 5220-7.
    13. Benck, J.D., Z. Chen, L.Y. Kuritzky, A.J. Forman, and T.F. Jaramillo, Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. ACS Catalysis, 2012. 2(9): p. 1916-1923.
    14. Merki, D., S. Fierro, H. Vrubel, and X. Hu, Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci., 2011. 2(7): p. 1262-1267.
    15. Merki, D., H. Vrubel, L. Rovelli, S. Fierro, and X. Hu, Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chemical Science, 2012. 3(8): p. 2515.
    16. Merki, D. and X. Hu, Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy & Environmental Science, 2011. 4(10): p. 3878.
    17. Chang, Y.-H., F.-Y. Wu, T.-Y. Chen, C.-L. Hsu, C.-H. Chen, F. Wiryo, K.-H. Wei, C.-Y. Chiang, and L.-J. Li, Three-Dimensional Molybdenum Sulfide Sponges for Electrocatalytic Water Splitting. Small, 2013. 10(5): p. 895-900.
    18. Wang, D.Y., M. Gong, H.L. Chou, C.J. Pan, H.A. Chen, Y. Wu, M.C. Lin, M. Guan, J. Yang, C.W. Chen, Y.L. Wang, B.J. Hwang, C.C. Chen, and H. Dai, Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. J Am Chem Soc, 2015. 137(4): p. 1587-92.
    19. Jasion, D., J.M. Barforoush, Q. Qiao, Y. Zhu, S. Ren, and K.C. Leonard, Low-Dimensional Hyperthin FeS2 Nanostructures for Efficient and Stable Hydrogen Evolution Electrocatalysis. ACS Catalysis, 2015. 5(11): p. 6653-6657.
    20. Miao, R., B. Dutta, S. Sahoo, J. He, W. Zhong, S.A. Cetegen, T. Jiang, S.P. Alpay, and S.L. Suib, Mesoporous Iron Sulfide for Highly Efficient Electrocatalytic Hydrogen Evolution. J Am Chem Soc, 2017. 139(39): p. 13604-13607.
    21. 劉姿瀞, 合成與鑑定高穩定硫化鋰-聚丙烯腈複合材料 應用於無鋰負極之鋰硫電池. 國立臺灣科技大學, 2017: p. 145.
    22. 洪惠鈺, 以溶解沉澱法製備高導電度硫/聚丙烯腈-碳複合物於鋰硫電池正極之應用. 國立臺灣科技大學, 2016: p. 124.
    23. H W. Nesbitt, M. Scaini, H. HÖchst, G.M. Bancroft, A.G. Schaufuss, and R. Szargan, Synchrotron XPS evidence for Fe2+-S and Fe3+-S surface species on pyrite fracture-surfaces, and their 3D electronic states. American Mineralogist, 2000. 85: p. 7.
    24. Guo, X., G.-l. Cao, F. Ding, X. Li, S. Zhen, Y.-f. Xue, Y.-m. Yan, T. Liu, and K.-n. Sun, A bulky and flexible electrocatalyst for efficient hydrogen evolution based on the growth of MoS2 nanoparticles on carbon nanofiber foam. Journal of Materials Chemistry A, 2015. 3(9): p. 5041-5046.

    QR CODE