簡易檢索 / 詳目顯示

研究生: 梁耀龍
Yao- Lung Liang
論文名稱: 碳奈米材料於鈣鈦礦太陽能電池之研究
The Study on Carbon Nanomaterials in Perovskite Solar Cells
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳良益
Liang-Yih Chen
陳貞夙
Jen-Sue Chen
吳季珍
Jih-Jen Wu
邱智瑋
Chih-Wei Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 118
中文關鍵詞: 鈣鈦礦太陽能電池奈米碳管碳電極
外文關鍵詞: perovskite, solar cell, carbon nanotube, carbon electrode
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中主要探討將碳奈米材料應用於鈣鈦礦太陽能電池對其效能的影響。在此,主要將碳奈米管材料添加於鈣鈦礦吸光層,以及使用混合不同奈米碳管比例的導電碳漿製作成碳電極取代原本電洞傳輸層與金電極。當鈣鈦礦層中添加0.06 mg的碳奈米管並同時以金做為電極時,其平均效率為10.2 %,最高效率可達12.4 %。由X-光繞射圖譜分析可知:添加碳奈米管於鈣鈦礦層時,鈣鈦礦的平均晶粒由53 nm下降至43 nm,且由交流阻抗頻譜分析結果中亦發現載子發生再結合阻力變小,導致太陽能電池短路電流密度值下降,以致於整體的轉換效率低於未添加碳奈米管的鈣鈦礦太陽能電池 (平均效率:13.1 %,最高效率:15.8 %)。此外,亦探討將不同比例碳奈米管添加至導電碳漿中,再以網版印刷法製備碳電極。由四點探針分析結果可知:當添加0.5 wt%碳奈米管至導電碳漿後,除了降低碳電極的片電阻值,由交流阻抗頻譜分析結果中得知載子的傳輸阻力變小、再結合阻力上升,使得填充因子增加,平均效率由未添加的5.88 %提升至6.41 %,而最高效率達8.06 %。


    In this study, we mainly discuss the effect of applying carbon nanomaterials to perovskite solar cells (PSCs) on their performance. Herein, the carbon nanotubes were added to the perovskite light-harvesting materials. In addition, a conductive carbon paste mixed with different ratio of carbon nanotubes (CNTs) was employed as electrode of PSCs to replace the hole transport materials and gold (Au) electrode. When 0.06 mg carbon nanotubes were added to the perovskite layer and Au was used as the electrode, the average power conversion efficiency (PCE) was 10.2 % and the highest PCE could achieve 12.4 %. According to X-ray diffraction pattern analysis, the average grain size of perovskite reduces from 53 nm to 43 nm when CNTs were added to perovskite layer. In addition, the recombination resistance become small was also found in the results of electrochemical impedance spectroscopy (EIS) analysis to reduce the short current density of PSC. Therefore, the PCE of CNTs added perovskite solar cell was lower than that of the perovskite solar cell without addition of CNTs (average PCE: 13.1%, the highest PCE: 15.8%). We also investigated adding CNTs of different ration to the conductive carbon pate, and then using the blade coating method to prepare carbon electrode. From analysis results of the four-point probe, it could be known that when 0.5 wt% CNTs were added to conductive carbon paste, the sheet resistance of the carbon electrode could be reduced. In addition, according to the result of EIS analysis, improvement of fill factor is attributed to lower transport resistance and higher recombination resistance. The average PCE was improved from 5.88 % to 6.41 % and the highest PCE cloud achieve 8.06 %.

    中文摘要 III Abstract IV 致謝 VI 目錄 VII 表目錄 X 圖目錄 XII 第一章、 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章、 理論基礎與文獻回顧 4 2-1 半導體簡介 4 2-1-1 半導體特性 4 2-1-2 p-n 接面(p-n junction) 7 2-2 鈣鈦礦材料 8 2-2-1 鈣鈦礦之能隙性質 11 2-3 鈣鈦礦太陽能電池簡介 12 2-3-1 介孔(mesoporous)結構 15 2-3-2 n-i-p平面結構 17 2-3-3 p-i-n平面結構 19 2-4 碳電極於鈣鈦礦太陽能電池之應用 20 2-4-1 雙界面結構(bi-interfacil structure) 21 2-4-2 三界面結構(tri-interfacil structure) 24 2-5 奈米碳管於鈣鈦礦太陽能電池之應用 28 2-5-1 奈米碳管簡介 28 2-5-2 奈米碳管添加於鈣鈦礦層 31 2-5-3 奈米碳管添加於電洞傳輸層 34 第三章、 實驗方法與步驟 37 3-1 實驗流程 37 3-2 實驗藥品與儀器設備 38 3-2-1 實驗藥品 38 3-2-2 實驗設備 40 3-2-3 分析儀器 43 3-3 實驗步驟 55 3-3-1 清洗FTO導電玻璃及定義工作面積 55 3-3-2 二氧化鈦緻密層及結構層製備 56 3-3-3 鋰處理修飾二氧化鈦電子傳輸層 57 3-3-4 DMF/DMSO混合溶劑預處理、奈米碳管前驅溶液配置與沉積鈣鈦礦層 58 3-3-5 沉積電洞傳輸層 60 3-3-6 蒸鍍金電極 60 3-3-7 網印碳電極 61 第四章、 結果與討論 62 4-1 以金電極進行鈣鈦礦太陽能電池之性能研究 62 4-2 奈米碳管添加對於鈣鈦礦層塗佈製程與性質之探討 67 4-2-1 奈米碳管添加對於鈣鈦礦層形貌與性質分析 68 4-2-2 奈米碳管添加對於鈣鈦礦太陽能電池性能之影響 79 4-3 以碳材作為電極進行鈣鈦礦太陽能電池效能之探討 84 4-3-1 碳電極的製程參數與電性分析 84 4-3-2 以碳電極進行鈣鈦礦太陽能電池製作與效能分析 86 第五章、 結論 91 第六章、 參考文獻 92

    1. U.S Energy Information Administration, International Energy Outlook 2019, 31-170 (2020).
    2. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells, Nano Letters 13 (4), 1764-1769 (2013).
    3. S. De Wolf, J. Holovsky, S. J. Moon, P. Loper, B. Niesen, M. Ledinsky, F. J. Haug, J. H. Yum and C. Ballif, Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance, The Journal of Physical Chemistry Letters 5 (6), 1035-1039 (2014).
    4. L. M. Herz, Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits, ACS Energy Letters 2 (7), 1539-1548 (2017).
    5. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in An Organometal Trihalide Perovskite Absorber, Science 342 (6156), 341-344 (2013).
    6. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society 131 (17), 6050-6051 (2009).
    7. The National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart, (2019).
    8. K. Domanski, J. P. Correa-Baena, N. Mine, M. K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt and M. Gratzel, Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells, ACS Nano 10 (6), 6306-6314 (2016).
    9. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi and T.Thio, Electrical Conductivity of Individual Carbon Nanotubes, Nature 382, 54 (1996).
    10. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters 8, 92 (2008).
    11. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao and Z. Guo, Formability of ABX3 (X = F, Cl, Br, I) Halide Perovskites, Acta Crystallogr B 64 (Pt 6), 702-707 (2008).
    12. V. M. Goldschmidt, Die Gesetze der Krystallochemie, Naturwissenschaften 14, 477-485 (1926).
    13. W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon and R. G. Palgrave, On the Application of the Tolerance Factor to Inorganic and Hybrid Halide Perovskites: A Revised System, Chemical Science 7 (7), 4548-4556 (2016).
    14. P. Gao, M. Grätzel and M. K. Nazeeruddin, Organohalide Lead Perovskites for Photovoltaic Applications, Energy & Environmental Science 7 (8), 2448-2463 (2014).
    15. X. Li, L. Liu, G. Liu, Y. Rong, Y. Yang, H. Wang, Z. Ku, M. Xu, C. Zhong and H. Han, Efficient Dye-Sensitized Solar Cells with Potential-Tunable Organic Sulfide Mediators and Graphene-Modified Carbon Counter Electrodes, Advanced Functional Materials 23 (26), 3344-3352 (2013).
    16. H. W. Han, W. Liu, J. Zhang and X. Z. Zhao, A Hybrid Poly(ethylene oxide)/ Poly(vinylidene fluoride)/TiO2 Nanoparticle Solid-State Redox Electrolyte for Dye-Sensitized Nanocrystalline Solar Cells, Advanced Functional Materials 15 (12), 1940-1944 (2005).
    17. Brian O'Regan and Michael Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737-740 (1991).
    18. K. Sharma, V. Sharma and S. S. Sharma, Dye-Sensitized Solar Cells: Fundamentals and Current Status, Nanoscale Research Letters 13 (1), 381 (2018).
    19. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel and N. G. Park, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Scientific Repots 2, 591 (2012).
    20. P. Roy, N. Kumar Sinha, S. Tiwari and A. Khare, A Review on Perovskite Solar Cells: Evolution of Architecture, Fabrication Techniques, Commercialization Issues and Status, Solar Energy 198, 665-688 (2020).
    21. E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh and J. Seo, Efficient, Stable and Scalable Perovskite Solar Cells Using Poly(3-Hexylthiophene), Nature 567 (7749), 511-515 (2019).
    22. N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi and N. G. Park, Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide, Journal of the American Chemical Society 137 (27), 8696-8699 (2015).
    23. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat Mater 13 (9), 897-903 (2014).
    24. Xiaobo Chen and Samuel S. Mao, Titanium Dioxide Nanomaterials  Synthesis, Properties, Modifications, and Application, Chemical Reviews 107 (7), 2891-2959 (2007).
    25. S. K. Pathak, A. Abate, P. Ruckdeschel, B. Roose, K. C. Gödel, Y. Vaynzof, A. Santhala, S.-I. Watanabe, D. J. Hollman, N. Noel, A. Sepe, U. Wiesner, R. Friend, H. J. Snaith and U. Steiner, Performance and Stability Enhancement of Dye-Sensitized and Perovskite Solar Cells by Al Doping of TiO2, Advanced Functional Materials 24 (38), 6046-6055 (2014).
    26. F. Giordano, A. Abate, J. P. Correa Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt and M. Graetzel, Enhanced Electronic Properties in Mesoporous TiO2 Via Lithium Doping for High-Efficiency Perovskite Solar Cells, Nature Communications 7, 10379 (2016).
    27. Michael M. Lee, Joël Teuscher, Tsutomu Miyasaka, Takurou N. Murakami and Henry J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science 338 (6017), 643-647 (2012).
    28. M. Liu, M. B. Johnston and H. J. Snaith, Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition, Nature 501 (7467), 395-398 (2013).
    29. J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. Srimath Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel and A. Hagfeldt, Highly Efficient Planar Perovskite Solar Cells through Band Alignment Engineering, Energy & Environmental Science 8 (10), 2928-2934 (2015).
    30. W. Ke, D. Zhao, A. J. Cimaroli, C. R. Grice, P. Qin, Q. Liu, L. Xiong, Y. Yan and G. Fang, Effects of Annealing Temperature of Tin Oxide Electron Selective Layers on the Performance Of Perovskite Solar Cells, Journal of Materials Chemistry A 3 (47), 24163-24168 (2015).
    31. J.-P. Correa-Baena, W. Tress, K. Domanski, E. H. Anaraki, S.-H. Turren-Cruz, B. Roose, P. P. Boix, M. Grätzel, M. Saliba, A. Abate and A. Hagfeldt, Identifying and Suppressing Interfacial Recombination to Achieve High Open-Circuit Voltage in Perovskite Solar Cells, Energy & Environmental Science 10 (5), 1207-1212 (2017).
    32. S. Suman, A. Siddiqui, M. L. Keshtov, G. D. Sharma and S. P. Singh, New Indolo Carbazole-Based Non-Fullerene N-Type Semiconductors for Organic Solar Cell Applications, Journal of Materials Chemistry C 7 (3), 543-552 (2019).
    33. G. Liu, J. Jia, K. Zhang, X. e. Jia, Q. Yin, W. Zhong, L. Li, F. Huang and Y. Cao, 15% Efficiency Tandem Organic Solar Cell Based on a Novel Highly Efficient Wide‐Bandgap Nonfullerene Acceptor with Low Energy Loss, Advanced Energy Materials 9 (11) (2019).
    34. J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen, CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells, Advanced Materials 25 (27), 3727-3732 (2013).
    35. J. Tang, D. Jiao, L. Zhang, X. Zhang, X. Xu, C. Yao, J. Wu and Z. Lan, High-Performance Inverted Planar Perovskite Solar Cells Based on Efficient Hole-Transporting Layers from Well-Crystalline Nio Nanocrystals, Solar Energy 161, 100-108 (2018).
    36. C. Tian, A. Mei, S. Zhang, H. Tian, S. Liu, F. Qin, Y. Xiong, Y. Rong, Y. Hu, Y. Zhou, S. Xie and H. Han, Oxygen management in carbon electrode for high-performance printable perovskite solar cells, Nano Energy 53, 160-167 (2018).
    37. F. Meng, A. Liu, L. Gao, J. Cao, Y. Yan, N. Wang, M. Fan, G. Wei and T. Ma, Current progress in interfacial engineering of carbon-based perovskite solar cells, Journal of Materials Chemistry A 7 (15), 8690-8699 (2019).
    38. H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du and T. Ma, Hole-Conductor-Free, Metal-Electrode-Free TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode, The Journal of Physical Chemistry Letters 5 (18), 3241-3246 (2014).
    39. Z. Liu, B. Sun, T. Shi, Z. Tang and G. Liao, Enhanced Photovoltaic Performance and Stability of Carbon Counter Electrode Based Perovskite Solar Cells Encapsulated by Pdms, Journal of Materials Chemistry A 4 (27), 10700-10709 (2016).
    40. P. Jiang, T. W. Jones, N. W. Duffy, K. F. Anderson, R. Bennett, M. Grigore, P. Marvig, Y. Xiong, T. Liu, Y. Sheng, L. Hong, X. Hou, M. Duan, Y. Hu, Y. Rong, G. J. Wilson and H. Han, Fully Printable Perovskite Solar Cells with Highly-Conductive, Low-Temperature, Perovskite-Compatible Carbon Electrode, Carbon 129, 830-836 (2018).
    41. H. Wei, J. Xiao, Y. Yang, S. Lv, J. Shi, X. Xu, J. Dong, Y. Luo, D. Li and Q. Meng, Free-Standing Flexible Carbon Electrode for Highly Efficient Hole-Conductor-Free Perovskite Solar Cells, Carbon 93, 861-868 (2015).
    42. Y. Yang, J. Xiao, H. Wei, L. Zhu, D. Li, Y. Luo, H. Wu and Q. Meng, An All-Carbon Counter Electrode for Highly Efficient Hole-Conductor-Free Organo-Metal Perovskite Solar Cells, RSC Advances 4 (95), 52825-52830 (2014).
    43. H. Li, K. Cao, J. Cui, S. Liu, X. Qiao, Y. Shen and M. Wang, 14.7% Efficient Mesoscopic Perovskite Solar Cells Using Single Walled Carbon Nanotubes/Carbon Composite Counter Electrodes, Nanoscale 8 (12), 6379-6385 (2016).
    44. F. Meng, L. Gao, Y. Yan, J. Cao, N. Wang, T. Wang and T. Ma, Ultra-Low-Cost Coal-Based Carbon Electrodes with Seamless Interfacial Contact for Effective Sandwich-Structured Perovskite Solar Cells, Carbon 145, 290-296 (2019).
    45. Z. Wei, K. Yan, H. Chen, Y. Yi, T. Zhang, X. Long, J. Li, L. Zhang, J. Wang and S. Yang, Cost-Efficient Clamping Solar Cells Using Candle Soot for Hole Extraction from Ambipolar Perovskites, Energy & Environmental Science 7 (10), 3326-3333 (2014).
    46. K. Cao, Z. Zuo, J. Cui, Y. Shen, T. Moehl, S. M. Zakeeruddin, M. Grätzel and M. Wang, Efficient Screen Printed Perovskite Solar Cells Based on Mesoscopic TiO2/Al2O3/NiO/Carbon Architecture, Nano Energy 17, 171-179 (2015).
    47. P. Jiang, Y. Xiong, M. Xu, A. Mei, Y. Sheng, L. Hong, T. W. Jones, G. J. Wilson, S. Xiong, D. Li, Y. Hu, Y. Rong and H. Han, The Influence of the Work Function of Hybrid Carbon Electrodes on Printable Mesoscopic Perovskite Solar Cells, The Journal of Physical Chemistry C 122 (29), 16481-16487 (2018).
    48. L. Zhang, T. Liu, L. Liu, M. Hu, Y. Yang, A. Mei and H. Han, The Effect of Carbon Counter Electrodes on Fully Printable Mesoscopic Perovskite Solar Cells, Journal of Materials Chemistry A 3 (17), 9165-9170 (2015).
    49. M. Xu, Y. Rong, Z. Ku, A. Mei, T. Liu, L. Zhang, X. Li and H. Han, Highly Ordered Mesoporous Carbon for Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cell, Journal of Materials Chemistry A 2 (23) (2014).
    50. Z. Ku, Y. Rong, M. Xu, T. Liu and H. Han, Full Printable Processed Mesoscopic CH(3)NH(3)PbI(3)/TiO(2) Heterojunction Solar Cells with Carbon Counter Electrode, Scientific Repots 3, 3132 (2013).
    51. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel and H. Han, A Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cell with High Stability, Science 345 (6194), 295-298 (2014).
    52. B. Kim, S. G. Ko, K. S. Sonu, J. H. Ri, U. C. Kim and G. I. Ryu, Effects of Adding PbI2 on the Performance of Hole-Transport Material-Free Mesoscopic Perovskite Solar Cells with Carbon Electrode, Journal of Electronic Materials 47 (10), 6266-6271 (2018).
    53. G. Huang, C. Wang, H. Zhang, S. Xu, Q. Xu and Y. Cui, Post-Healing of Defects: An Alternative Way for Passivation of Carbon-Based Mesoscopic Perovskite Solar Cells Via Hydrophobic Ligand Coordination, Journal of Materials Chemistry A 6 (6), 2449-2455 (2018).
    54. Y. Rong, X. Hou, Y. Hu, A. Mei, L. Liu, P. Wang and H. Han, Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells, Nature Communications 8, 14555 (2017).
    55. X. Hou, Y. Hu, H. Liu, A. Mei, X. Li, M. Duan, G. Zhang, Y. Rong and H. Han, Effect of Guanidinium on Mesoscopic Perovskite Solar Cells, Journal of Materials Chemistry A 5 (1), 73-78 (2017).
    56. J. Chen, Y. Xiong, Y. Rong, A. Mei, Y. Sheng, P. Jiang, Y. Hu, X. Li and H. Han, Solvent effect on the hole-conductor-free fully printable perovskite solar cells, Nano Energy 27, 130-137 (2016).
    57. G. Mahmoudi, A. Bauza and A. Frontera, Concurrent Agostic and Tetrel Bonding Interactions in Lead(II) Complexes with An Isonicotinohydrazide Based Ligand and Several Anions, Dalton Transactions 45 (12), 4965-4969 (2016).
    58. R. L. Davidovich, V. Stavila, D. V. Marinin, E. I. Voit and K. H. Whitmire, Stereochemistry of Lead(II) Complexes with Oxygen Donor Ligands, Coordination Chemistry Reviews 253 (9-10), 1316-1352 (2009).
    59. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Synthesis of Graphene-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide, Carbon 45 (7), 1558-1565 (2007).
    60. K. Dasgupta and D. Sathiyamoorthy, Disordered Carbon–Its Preparation, Structure, and Characterisation, Materials Science and Technology 19 (8), 995-1002 (2013).
    61. S. lijima, Synthesis of Carbon Nanotubes, Nature 354, 56-58 (1991).
    62. A. P. Graham, G. S. Duesberg, W. Hoenlein, F. Kreupl, M. Liebau, R. Martin, B. Rajasekharan, W. Pamler, R. Seidel, W. Steinhoegl and E. Unger, How Do Carbon Nanotubes Fit into The Semiconductor Roadmap?, Applied Physics A 80 (6), 1141-1151 (2005).
    63. Teri Wang Odom, Jin-Lin Huang, Philip Kim and C. M. Lieber, Atomic Structure and Electronic Properties of Single-Walled Carbon Nanotubes, Nature 391, 62-64 (1998).
    64. A. C. Dillon, Carbon Nanotubes for Photoconversion and Electrical Energy Storage, Chemical Reviews 110 (11), 6856-6872 (2010).
    65. H. DAI, Carbon Nanotubes Synthesis Integration and Properties, Accounts of Chemical Research 35, 1035-1044 (2002).
    66. M.S.Dresselhaus, G.Dresselhaus and R. Saito, C60-related tubules, Solid State Communications 84 (1-2), 201-205 (1992).
    67. J. Chen, T. Chen, T. Xu, J.-Y. Chang and K. Waki, MAPbI3 Self‐Recrystallization Induced Performance Improvement for Oxygen‐Containing Functional Groups Decorated Carbon Nanotube‐Based Perovskite Solar Cells, Solar RRL 3 (12) (2019).
    68. Y. Zhang, L. Tan, Q. Fu, L. Chen, T. Ji, X. Hu and Y. Chen, Enhancing The Grain Size of Organic Halide Perovskites by Sulfonate-Carbon Nanotube Incorporation in High Performance Perovskite Solar Cells, Chemical Communications (Cambridge, England) 52 (33), 5674-5677 (2016).
    69. Y. Wang, W. Li, T. Zhang, D. Li, M. Kan, X. Wang, X. Liu, T. Wang and Y. Zhao, Highly Efficient (110) Orientated FA‐MA Mixed Cation Perovskite Solar Cells via Functionalized Carbon Nanotube and Methylammonium Chloride Additive, Small Methods 4 (5) (2019).
    70. M. Bag, L. A. Renna, S. P. Jeong, X. Han, C. L. Cutting, D. Maroudas and D. Venkataraman, Evidence for Reduced Charge Recombination in Carbon Nanotube/Perovskite-Based Active Layers, Chemical Physics Letters 662, 35-41 (2016).
    71. T. Miletic, E. Pavoni, V. Trifiletti, A. Rizzo, A. Listorti, S. Colella, N. Armaroli and D. Bonifazi, Covalently Functionalized SWCNTs as Tailored p-Type Dopants for Perovskite Solar Cells, ACS Appl Mater Interfaces 8 (41), 27966-27973 (2016).
    72. T. Leijtens, T. Giovenzana, S. N. Habisreutinger, J. S. Tinkham, N. K. Noel, B. A. Kamino, G. Sadoughi, A. Sellinger and H. J. Snaith, Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells, ACS Appl Mater Interfaces 8 (9), 5981-5989 (2016).
    73. K. Aitola, K. Sveinbjörnsson, J.-P. Correa-Baena, A. Kaskela, A. Abate, Y. Tian, E. M. J. Johansson, M. Grätzel, E. I. Kauppinen, A. Hagfeldt and G. Boschloo, Carbon Nanotube-Based Hybrid Hole-Transporting Material and Selective Contact for High Efficiency Perovskite Solar Cells, Energy & Environmental Science 9 (2), 461-466 (2016).
    74. B. P. Singh, V. Choudhary, S. Teotia, T. K. Gupta, V. N. Singh, S. R. Dhakate and R. B. Mathur, Solvent Free, Efficient, Industrially Viable, Fast Dispersion Process Based Amine Modified MWCNT Reinforced Epoxy Composites of Superior Mechanical Properties, Advanced Materials Letters 6 (2), 104-113 (2015).
    75. O. Eren, N. Ucar, A. Onen, N. Kizildag and I. Karacan, Synergistic Effect of Polyaniline, Nanosilver, and Carbon Nanotube Mixtures on The Structure and Properties of Polyacrylonitrile Composite Nanofiber, Journal of Composite Materials 50 (15), 2073-2086 (2015).
    76. S. Shukrullah, M. Y. Naz, N. M. Mohamed, K. A. Ibrahim, N. M. AbdEl-Salam and A. Ghaffar, CVD Synthesis, Functionalization and CO2 Adsorption Attributes of Multiwalled Carbon Nanotubes, Processes 7 (9) (2019).
    77. T. Ramanathan, F. T. Fisher, R. S. Ruoff and L. C. Brinson, Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems, Chemistry of Materials 17 (6), 1290-1295 (2005).
    78. G. Y. Lee, M. Y. Yang, D. H. Kim, J. Lim, J. Byun, D. S. Choi, H. J. Lee, Y. S. Nam, I. D. Kim and S. O. Kim, Nitrogen‐Dopant‐Induced Organic–Inorganic Hybrid Perovskite Crystal Growth on Carbon Nanotubes, Advanced Functional Materials 29 (30) (2019).
    79. Zhen Li, Sneha A. Kulkarni, Pablo P. Boix, Enzheng Shi, Anyuan Cao, Kunwu Fu, Sudip K. Batabyal, Jun Zhang, Qihua Xiong, Lydia Helena Wong and a. S. G. M. Nripan Mathews, Laminated Carbon Nanotube Networks for Metal Electrode-Free Efficient Perovskite Solar Cells, ACS Nano 8 (7), 6797-6804 (2014).
    80. J. Ryu, K. Lee, J. Yun, H. Yu, J. Lee and J. Jang, Paintable Carbon-Based Perovskite Solar Cells with Engineered Perovskite/Carbon Interface Using Carbon Nanotubes Dripping Method, Nano micro small 13 (38) (2017).
    81. G. Liao, Y. Zhao, J. Duan, H. Yuan, Y. Wang, X. Yang, B. He and Q. Tang, Enhanced Charge Extraction with All-Carbon Electrodes for Inorganic CsPbBr3 Perovskite Solar Cells, Dalton Trans 47 (43), 15283-15287 (2018).

    無法下載圖示 全文公開日期 2025/08/17 (校內網路)
    全文公開日期 2025/08/17 (校外網路)
    全文公開日期 2025/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE