簡易檢索 / 詳目顯示

研究生: Abiye Kebede Agegnehu
Abiye - Kebede Agegnehu
論文名稱: 二氧化鈦能隙調控工程與以低成本石墨烯為基礎之奈米複合材料於光催化水分解產氫之研究
Band Gap Engineering on Titania and Low Cost Graphene Based Nanocomposite Materials for Efficient Hydrogen Production via Photocatalytic Water Splitting.
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 周澤川
none
楊明長
none
林智汶
none
杜景順
none
周宏隆
Hung-Lung Chou
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 182
中文關鍵詞: 光催化劑氧化石墨烯高度還原的氧化石墨烯納米粒子納米棒助催化劑氧化釩氧化
外文關鍵詞: highly reduced graphene oxide, vanadium oxide
相關次數: 點閱:445下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • I have no Chinese abstract.


    A great technological challenge for H2 production from solar water splitting is the development of a clean and renewable energy carrier that does not utilize fossil fuels. One of the most attractive proposals is the large-scale utilization of hydrogen (H2) as a recyclable energy carrier. However, traditional industrial H2 production has limitations of consuming huge amounts of fossil fuels (e.g., natural gas), which results in equally large amounts of CO2 release. Photocatalytic and photoelectrochemical water splitting using semiconductor materials has thus attracted considerable interest due to its potential for clean production of H2 from water by utilizing abundant solar light. Thus the development of new efficient photocatalytic nanoarchitecture materials which are environmentally friendly, noble metal free, and visible region active is of paramount importance to tackle the current challenges of energy and environmental crisis.
    The main objective of this research has sought the practicality of solar to fuel conversion at a large scale. Thus the research focuses on investigation of multitalented nature of naturally abundant graphene based materials, and band gap engineering of the titanium dioxide towards visible region. The use of noble metal cocatalysts such as Pt has been completely avoided and rather low cost alternatives Ni, NiO, and highly reduced graphene oxide (HRGO) have been used as cocatalysts. Moreover, the well investigated titania based visible active photocatalyst has been prudently integrated with the newly discovered graphene based material for efficient hydrogen production from water splitting.
    Cocatalytic ultrafine Ni and NiO nanoparticles (2 to 3 nm diameter) were uniformly loaded on graphene oxide sheets using a simple chemical method. Water splitting activity from aqueous methanol solution under UV-visible light illumination was enhanced, approximately 4-fold for NiO/GO and 7-fold for Ni/GO, compared to bare GO. The highest activity (shown by Ni/GO) is attributed to the minimal electron-hole recombination resulting from the easy transfer of photogenerated electrons from the GO photocatalyst to the Ni cocatalyst. The relatively lower activity of NiO/GO may be due to the less efficient electron trapping ability of the NiO surface. A mechanism for the hydrogen gas evolution is proposed. This work revealed that a cocatalyst loaded on high surface area GO sheets can significantly enhance the evolution of hydrogen from aqueous methanol solution. This study offers a route to green energy harvesting using readily available low cost materials in combination with simple, versatile and scalable techniques. It also encourages the utilization of new graphene based materials which are adaptable to a wide variety of nanotechnology applications in many other areas.
    Moreover the band gap of titania is engineered by doping vanadium and the visible light responsive vanadium doped TiO2 nanoparticles (~ 6 nm diameter) have been successfully synthesized using a low temperature hydrothermal method. These nanoparticles were effectively composited with highly reduced graphene oxide (HRGO). Compared to undoped TiO2 nanoparticles and non-composited V-doped nanoparticles the nanocomposite exhibited enhanced hydrogen evolution under visible light illumination. The nanoparticles, loaded on HRGO, were intentionally fabricated as nanorods to enhance their contact with the HRGO sheets. Nanorod anchoring on HRGO, crystal structure, morphology and the porosity of the nanocomposite were analyzed by using EDX, XRD, TEM, and BET respectively. The photogenerated electrons were able to be trapped by the electron conducting HRGO sheet, thereby suppressing electron-hole recombination. For this reason, the nanocomposite material showed a better hydrogen evolution rate compared to the non-composited nanoparticles. This noble metal free nanocomposite material composed of highly conducting sheets loaded with stable, cheap and environmentally friendly titanium based porous nanorods also offers promise for other applications such as lithium ion batteries.

    Abstract ii Acknowledgment vi Table of Content vii List of Tables x List of Schemes xi List of Figures xii Chapter1 Introduction 1 1.1 Heterogeneous Photocatalysis and its Application 4 1.2 Fundamental principles and requirements of the photocatalysts 6 1.3 Evaluation of a photocatalytic water splitting efficiency 10 1.4 Varieties of photocatalyst materials for water splitting 12 1.4.1 Titanium oxide based semiconductor catalysts 13 1.4.2 Non-titania oxide photocatalysts 14 Chapter 2 Literature Review on Photocatalytysis and Solar to Fuel Conversion 16 2.1 Design and modification for nanomaterials for solar induced hydrogen evolution 16 2.2 UV-responsive photocatalysts for hydrogen production 17 2.2.1 d0 metal oxide photocatalysts 17 2.2.2 d10 metal oxide photocatalysts 22 2.2.3 f0 metal oxide photocatalysts 22 2.2.4 Nonoxide photocatalysts 23 2.2.5 Other new photocatalysts 26 2.3 Tailoring of visible light harvesting nanomaterials 29 2.3.1 Metal Ion doping 31 2.3.2 Nonmetal ion doping 33 2.3.3 Metal/nonmetal codoping 36 2.3.4 Creation of oxygen vacancies and oxygen sub stoichiometry 37 2.3.5 Dye sensitization 38 2.3.6 Semiconductor coupling 40 2.4 Approaches for efficient electron-hole separation 43 2.4.1 Noble metal cocatalyst loading 44 2.4.2 Metal oxide cocatalyst loading 47 2.4.3 Role of Sacrificial agents 51 2.5 Graphene based nanocomposite materials 53 2.6 Surface Plasmon effect 61 Chapter 3 Experimental and characterization 71 3.1 Experimental section 71 3.1.1 Chemicals 71 3.1.2 Preparation of GO 72 3.1.3 Preparation of Ni/GO and NiO/GO 72 3.1.4 Preparation of V-doped TiO2 nanospheres 73 3.1.5 Synthesis of V-doped TiO2/HRGO nanocomposite 73 3.2 Characterization 74 3.2.1 X-ray diffraction (XRD) analysis 74 3.2.2 Raman spectral analysis 75 3.2.3 Scanning electron microscopy and energy dispersive spectroscopy 76 analysis 76 3.2.4 Transmission electron microscopic analysis 77 3.2.5 Ultraviolet absorption analysis 78 3.2.6 Brunauer-Emmett-Teller (BET) analysis 79 3.2.7 X-ray photoelectron spectroscopy (XPS) analysis 80 3.2.8 X-ray absorption spectroscopy (XAS) analysis 81 3.2.9 Electrochemical measurements 82 3.2.10 Photocatalytic activity tests of GO, Ni/GO and NiO/GO 82 3.2.11 Photocatalytic activity tests of V- TiO2 and V-TiO2/HRGO 83 Chapter 4 Synthesis & Photocatalytic Application of GO, Ni/GO and NiO/GO 84 4.1 Motivation 84 4.2 Results and discussion 87 4.2.1 Oxidation of pristine graphite to graphene oxide 87 4.2.2 The formation of Ni and NiO on GO 91 4.2.3 Photocatalytic activities 95 4.2.4 Summary 99 Chapter 5 Synthesis of V doped TiO2 and its nanocomposite with HRGO 100 5.1 Motivation 100 5.2 Results and Discussion 102 5.2.1 Doping of V into TiO2 102 5.2.2 Growth Mechanism of V-TiO2 nanorods on HRGO surface 115 5.2.3 Photocatalytic activity 116 5.3 Summary 122 Chapter 6 Conclusions 123 Chapter 7 Future Outlook 126 References 131 Curriculum Vitae of Author 143 List of research papers 144 Conference/Workshop presentations 145

    1. V. Fthenakis, J. E. Mason and K. Zweibel, Energy Policy 37 (2), 387-399 (2009).
    2. K. Murata, L. Wang, M. Saito, M. Inaba, I. Takahara and N. Mimura, Energy & Fuels 18 (1), 122-126 (2003).
    3. X. Chen, S. Shen, L. Guo and S. S. Mao, Chemical Reviews 110 (11), 6503-6570 (2010).
    4. A. J. Nozik and J. Miller, Chemical Reviews 110 (11), 6443-6445 (2010).
    5. T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets and D. G. Nocera, Chemical Reviews 110 (11), 6474-6502 (2010).
    6. A. Fujishima and K. Honda, Nature 238 (5358), 37-38 (1972).
    7. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chemical Reviews 95 (1), 69-96 (1995).
    8. M. A. Fox and M. T. Dulay, Chemical Reviews 93 (1), 341-357 (1993).
    9. A. L. Linsebigler, G. Lu and J. T. Yates, Chemical Reviews 95 (3), 735-758 (1995).
    10. A. Fujishima and X. Zhang, Comptes Rendus Chimie 9 (5–6), 750-760 (2006).
    11. K. Woan, G. Pyrgiotakis and W. Sigmund, Advanced Materials 21 (21), 2233-2239 (2009).
    12. K. Rajeshwar, N. R. de Tacconi and C. R. Chenthamarakshan, Chemistry of Materials 13 (9), 2765-2782 (2001).
    13. A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000).
    14. S. N. Frank and A. J. Bard, Journal of the American Chemical Society 99 (1), 303-304 (1977).
    15. N. Serpone and A. V. Emeline, The Journal of Physical Chemistry Letters 3 (5), 673-677 (2012).
    16. A. Gallo, M. Marelli, R. Psaro, V. Gombac, T. Montini, P. Fornasiero, R. Pievo and V. D. Santo, Green Chemistry (2012).
    17. J. Guo, S. Zhu, Z. Chen, Y. Li, Z. Yu, Q. Liu, J. Li, C. Feng and D. Zhang, Ultrasonics Sonochemistry 18 (5), 1082-1090 (2011).
    18. Q. Jin, M. Fujishima and H. Tada, The Journal of Physical Chemistry C 115 (14), 6478-6483 (2011).
    19. T. A. Kandiel, R. Dillert and D. W. Bahnemann, Photochemical & Photobiological Sciences 8 (5), 683-690 (2009).
    20. H. Kato and A. Kudo, The Journal of Physical Chemistry B 106 (19), 5029-5034 (2002).
    21. H.-i. Kim, G.-h. Moon, D. Monllor-Satoca, Y. Park and W. Choi, The Journal of Physical Chemistry C (2011).
    22. I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S. G. Neophytides and P. Falaras, Journal of Catalysis 220 (1), 127-135 (2003).
    23. M. A. Aramendia, J. C. Colmenares, A. Marinas, J. M. Marinas, J. M. Moreno, J. A. Navio and F. J. Urbano, Catalysis Today 128 (3–4), 235-244 (2007).
    24. Y. Cao, T. He, Y. Chen and Y. Cao, The Journal of Physical Chemistry C 114 (8), 3627-3633 (2010).
    25. K. Tanaka, W. Luesaiwong and T. Hisanaga, Journal of Molecular Catalysis A: Chemical 122 (1), 67-74 (1997).
    26. K. Sato, T. Hirakawa, A. Komano, S. Kishi, C. K. Nishimoto, N. Mera, M. Kugishima, T. Sano, H. Ichinose, N. Negishi, Y. Seto and K. Takeuchi, Applied Catalysis B: Environmental 106 (3–4), 316-322 (2011).
    27. J. Ohyama, A. Yamamoto, K. Teramura, T. Shishido and T. Tanaka, ACS Catalysis 1 (3), 187-192 (2011).
    28. X.-T. Pian, B.-Z. Lin, Y.-L. Chen, J.-D. Kuang, K.-Z. Zhang and L.-M. Fu, The Journal of Physical Chemistry C 115 (14), 6531-6539 (2011).
    29. R. Abe, K. Sayama and H. Sugihara, The Journal of Physical Chemistry B 109 (33), 16052-16061 (2005).
    30. K. Sayama and H. Arakawa, Journal of Photochemistry and Photobiology A: Chemistry 77 (2–3), 243-247 (1994).
    31. D. Jing, L. Guo, L. Zhao, X. Zhang, H. Liu, M. Li, S. Shen, G. Liu, X. Hu, X. Zhang, K. Zhang, L. Ma and P. Guo, International Journal of Hydrogen Energy 35 (13), 7087-7097 (2010).
    32. A. Longo, L. F. Liotta, G. D. Carlo, F. Giannici, A. M. Venezia and A. Martorana, Chemistry of Materials 22 (13), 3952-3960 (2010).
    33. Y. Liu, L. Chen, J. Hu, J. Li and R. Richards, The Journal of Physical Chemistry C 114 (3), 1641-1645 (2010).
    34. B. H. Chen and J. M. White, The Journal of Physical Chemistry 86 (18), 3534-3541 (1982).
    35. S. J. Tauster, S. C. Fung and R. L. Garten, Journal of the American Chemical Society 100 (1), 170-175 (1978).
    36. J.-J. Chen, J. C. S. Wu, P. C. Wu and D. P. Tsai, The Journal of Physical Chemistry C 115 (1), 210-216 (2010).
    37. X. Chen and S. S. Mao, Chem. Rev. 107, 2891 (2007).
    38. A. Kudo and Y. Miseki, Chemical Society Reviews 38 (1), 253-278 (2009).
    39. A. Kubacka, M. Fernandez-Garcia and G. Colon, Chemical Reviews (2011).
    40. A. Kudo, Catalysis Surveys from Asia 7 (1), 31-38 (2003).
    41. X. Chen and S. S. Mao, Chemical Reviews 107 (7), 2891-2959 (2007).
    42. H. J. Yun, H. Lee, N. D. Kim, D. M. Lee, S. Yu and J. Yi, ACS Nano 5 (5), 4084-4090 (2011).
    43. J. Yu, L. Qi and M. Jaroniec, The Journal of Physical Chemistry C 114 (30), 13118-13125 (2010).
    44. Y. Yao, G. Li, S. Ciston, R. M. Lueptow and K. A. Gray, Environmental Science & Technology 42 (13), 4952-4957 (2008).
    45. M.-C. Yang, T.-S. Yang and M.-S. Wong, Thin Solid Films 469-470 (0), 1-5 (2004).
    46. N. Y, in Comprehensive Nanoscience and Technology, edited by L. A. Editors-in-Chief: David, D. S. Gregory and P. W. Gary (Academic Press, Amsterdam, 2011), pp. 571-605.
    47. H. Xu, X. Chen, S. Ouyang, T. Kako and J. Ye, The Journal of Physical Chemistry C 116 (5), 3833-3839 (2012).
    48. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chemical Reviews 111 (9), 5815-5815 (2011).
    49. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori and N. S. Lewis, Chemical Reviews 110 (11), 6446-6473 (2010).
    50. B. K. Vijayan, N. M. Dimitrijevic, D. Finkelstein-Shapiro, J. Wu and K. A. Gray, ACS Catalysis 2 (2), 223-229 (2011).
    51. W. Y. Teoh, J. A. Scott and R. Amal, The Journal of Physical Chemistry Letters, 629-639 (2012).
    52. J. Tang, J. R. Durrant and D. R. Klug, Journal of the American Chemical Society 130 (42), 13885-13891 (2008).
    53. A. Tanaka, A. Ogino, M. Iwaki, K. Hashimoto, A. Ohnuma, F. Amano, B. Ohtani and H. Kominami, Langmuir 28 (36), 13105-13111 (2012).
    54. A. Takai and P. V. Kamat, ACS Nano 5 (9), 7369-7376 (2011).
    55. M. Tabata, K. Maeda, T. Ishihara, T. Minegishi, T. Takata and K. Domen, The Journal of Physical Chemistry C 114 (25), 11215-11220 (2010).
    56. V. Subramanian, E. E. Wolf and P. V. Kamat, The Journal of Physical Chemistry B 107 (30), 7479-7485 (2003).
    57. V. Subramanian, E. Wolf and P. V. Kamat, The Journal of Physical Chemistry B 105 (46), 11439-11446 (2001).
    58. N. Strataki, N. Boukos, F. Paloukis, S. G. Neophytides and P. Lianos, Photochemical & Photobiological Sciences 8 (5), 639-643 (2009).
    59. T. Sreethawong and S. Yoshikawa, Catalysis Communications 6 (10), 661-668 (2005).
    60. G. P. Smestad and A. Steinfeld, Industrial & Engineering Chemistry Research (2012).
    61. M. E. Simonsen, H. Jensen, Z. Li and E. G. Sogaard, Journal of Photochemistry and Photobiology A: Chemistry 200 (2-3), 192-200 (2008).
    62. J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang and C. Li, The Journal of Physical Chemistry C 111 (2), 693-699 (2006).
    63. M. S. A. Sher Shah, A. R. Park, K. Zhang, J. H. Park and P. J. Yoo, ACS Applied Materials & Interfaces 4 (8), 3893-3901 (2012).
    64. N. Serpone, D. Lawless, J. Disdier and J.-M. Herrmann, Langmuir 10 (3), 643-652 (1994).
    65. K. Satoshi, M. Takuya, H. Katsumasa, K. Hideyuki, S. Tohru, V. Suresh Chand and S. Kunihiro, in Nanocatalysis for Fuels and Chemicals (American Chemical Society, 2012), Vol. 1092, pp. 25-36.
    66. M. Saif and M. S. A. Abdel-Mottaleb, Inorganica Chimica Acta 360 (9), 2863-2874 (2007).
    67. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, Journal of the American Chemical Society 128 (7), 2385-2393 (2006).
    68. E. Reisner, D. J. Powell, C. Cavazza, J. C. Fontecilla-Camps and F. A. Armstrong, Journal of the American Chemical Society 131 (51), 18457-18466 (2009).
    69. K.-W. Park, K.-S. Ahn, Y.-C. Nah, J.-H. Choi and Y.-E. Sung, The Journal of Physical Chemistry B 107 (18), 4352-4355 (2003).
    70. B. Ohtani, Y. Ogawa and S.-i. Nishimoto, The Journal of Physical Chemistry B 101 (19), 3746-3752 (1997).
    71. Y. Nosaka, M. Matsushita, J. Nishino and A. Y. Nosaka, Science and Technology of Advanced Materials 6 (2), 143-148 (2005).
    72. M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, Renewable and Sustainable Energy Reviews 11 (3), 401-425 (2007).
    73. R. Nakamura, T. Tanaka and Y. Nakato, The Journal of Physical Chemistry B 109 (18), 8920-8927 (2005).
    74. O. Micic, Y. Zhang, K. R. Cromack, A. Trifunac and M. Thurnauer, The Journal of Physical Chemistry 97 (50), 13284-13288 (1993).
    75. B. H. Meekins and P. V. Kamat, The Journal of Physical Chemistry Letters 2 (18), 2304-2310 (2011).
    76. I. N. Martyanov, T. Berger, O. Diwald, S. Rodrigues and K. J. Klabunde, Journal of Photochemistry and Photobiology A: Chemistry 212 (2-3), 135-141 (2010).
    77. K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi and K. Domen, The Journal of Physical Chemistry B 109 (43), 20504-20510 (2005).
    78. K. Maeda, M. Higashi, D. Lu, R. Abe and K. Domen, Journal of the American Chemical Society 132 (16), 5858-5868 (2010).
    79. K. Maeda and K. Domen, The Journal of Physical Chemistry C 111 (22), 7851-7861 (2007).
    80. W.-C. Lin, W.-D. Yang, I. L. Huang, T.-S. Wu and Z.-J. Chung, Energy & Fuels 23 (4), 2192-2196 (2009).
    81. Y.-F. Li and Z.-P. Liu, Journal of the American Chemical Society 133 (39), 15743-15752 (2011).
    82. P. Li, S. Ouyang, G. Xi, T. Kako and J. Ye, The Journal of Physical Chemistry C 116 (14), 7621-7628 (2012).
    83. K. Lalitha, G. Sadanandam, V. D. Kumari, M. Subrahmanyam, B. Sreedhar and N. Y. Hebalkar, The Journal of Physical Chemistry C 114 (50), 22181-22189 (2010).
    84. N. Lakshminarasimhan, A. D. Bokare and W. Choi, The Journal of Physical Chemistry C 116 (33), 17531-17539 (2012).
    85. S. G. Kumar and L. G. Devi, The Journal of Physical Chemistry A (2011).
    86. A. Kumar and N. Mathur, Journal of Colloid and Interface Science 300 (1), 244-252 (2006).
    87. I. K. Konstantinou and T. A. Albanis, Applied Catalysis B: Environmental 49 (1), 1-14 (2004).
    88. S. Klosek and D. Raftery, The Journal of Physical Chemistry B 105 (14), 2815-2819 (2001).
    89. M. Kitano, M. Matsuoka, M. Ueshima and M. Anpo, Applied Catalysis A: General 325 (1), 1-14 (2007).
    90. K. Kiatkittipong, J. Scott and R. Amal, ACS Applied Materials & Interfaces 3 (10), 3988-3996 (2011).
    91. R. S. Khnayzer, L. B. Thompson, M. Zamkov, S. Ardo, G. J. Meyer, C. J. Murphy and F. N. Castellano, The Journal of Physical Chemistry C 116 (1), 1429-1438 (2011).
    92. L. Kavan, M. Gratzel, S. E. Gilbert, C. Klemenz and H. J. Scheel, Journal of the American Chemical Society 118 (28), 6716-6723 (1996).
    93. T. A. Kandiel, R. Dillert, L. Robben and D. W. Bahnemann, Catalysis Today 161 (1), 196-201 (2011).
    94. P. V. Kamat, The Journal of Physical Chemistry Letters 3 (5), 663-672 (2012).
    95. P. V. Kamat, The Journal of Physical Chemistry B 106 (32), 7729-7744 (2002).
    96. J. S. Jang, S. H. Choi, D. H. Kim, J. W. Jang, K. S. Lee and J. S. Lee, The Journal of Physical Chemistry C 113 (20), 8990-8996 (2009).
    97. H. Irie, Y. Watanabe and K. Hashimoto, The Journal of Physical Chemistry B 107 (23), 5483-5486 (2003).
    98. H. He, C. Liu, K. D. Dubois, T. Jin, M. E. Louis and G. Li, Industrial & Engineering Chemistry Research 51 (37), 11841-11849 (2012).
    99. S. Hara, M. Yoshimizu, S. Tanigawa, L. Ni, B. Ohtani and H. Irie, The Journal of Physical Chemistry C 116 (33), 17458-17463 (2012).
    100. L. J. Guo, L. Zhao, D. W. Jing, Y. J. Lu, H. H. Yang, B. F. Bai, X. M. Zhang, L. J. Ma and X. M. Wu, Energy 34 (9), 1073-1090 (2009).
    101. J. Fang, F. Shi, J. Bu, J. Ding, S. Xu, J. Bao, Y. Ma, Z. Jiang, W. Zhang, C. Gao and W. Huang, The Journal of Physical Chemistry C 114 (17), 7940-7948 (2010).
    102. F. Dong, S. Guo, H. Wang, X. Li and Z. Wu, The Journal of Physical Chemistry C 115 (27), 13285-13292 (2011).
    103. M. V. Diamanti, M. Ormellese, E. Marin, A. Lanzutti, A. Mele and M. P. Pedeferri, Journal of Hazardous Materials 186 (2-3), 2103-2109 (2011).
    104. M. D’Arienzo, J. Carbajo, A. Bahamonde, M. Crippa, S. Polizzi, R. Scotti, L. Wahba and F. Morazzoni, Journal of the American Chemical Society 133 (44), 17652-17661 (2011).
    105. H. M. Coleman, K. Chiang and R. Amal, Chemical Engineering Journal 113 (1), 65-72 (2005).
    106. J. Choi, H. Park and M. R. Hoffmann, The Journal of Physical Chemistry C 114 (2), 783-792 (2009).
    107. I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo and X. Zheng, Nano Letters 11 (11), 4978-4984 (2011).
    108. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu and Y. Feng, ACS Nano 4 (11), 6425-6432 (2010).
    109. O. Carp, C. L. Huisman and A. Reller, Progress in Solid State Chemistry 32 (1–2), 33-177 (2004).
    110. M. Bowker, P. Stone, P. Morrall, R. Smith, R. Bennett, N. Perkins, R. Kvon, C. Pang, E. Fourre and M. Hall, Journal of Catalysis 234 (1), 172-181 (2005).
    111. A. Bhattacharyya, S. Kawi and M. B. Ray, Catalysis Today 98 (3), 431-439 (2004).
    112. F. Amano, A. Yamakata, K. Nogami, M. Osawa and B. Ohtani, Journal of the American Chemical Society 130 (52), 17650-17651 (2008).
    113. S. Ogura, K. Sato and Y. Inoue, Physical Chemistry Chemical Physics 2 (10), 2449-2454 (2000).
    114. S. Ikeda, M. Hara, J. N. Kondo, K. Domen, H. Takahashi, T. Okubo and M. Kakihana, Chemistry of Materials 10 (1), 72-77 (1998).
    115. H. G. Kim, D. W. Hwang, J. Kim, Y. G. Kim and J. S. Lee, Chemical Communications (12), 1077-1078 (1999).
    116. K. Yamaguti and S. Sato, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 81 (5), 1237-1246 (1985).
    117. X. Chen, T. Yu, X. Fan, H. Zhang, Z. Li, J. Ye and Z. Zou, Applied Surface Science 253 (20), 8500-8506 (2007).
    118. A. Kudo, A. Tanaka, K. Domen and T. Onishi, J. Catal. 111, 296 (1988).
    119. A. Kudo, K. Sayama, A. Tanaka, K. Asakura, K. Domen, K. Maruya and T. Onishi, J. Catal. 120, 337 (1989).
    120. J. Zhu and M. Zach, Current Opinion in Colloid & Interface Science 14 (4), 260-269 (2009).
    121. K. Sayama and H. Arakawa, The Journal of Physical Chemistry 97 (3), 531-533 (1993).
    122. K. Maeda, M. Eguchi, W. J. Youngblood and T. E. Mallouk, Chemistry of Materials 21 (15), 3611-3617 (2009).
    123. M. Yoshino, M. Kakihana, W. S. Cho, H. Kato and A. Kudo, Chemistry of Materials 14 (8), 3369-3376 (2002).
    124. M. Shibata, A. Kudo, A. Tanaka, K. Domen, K. Maruya and T. Ohishi, Chem. Lett. 16, 1017 (1987).
    125. M. R. Allen, A. Thibert, E. M. Sabio, N. D. Browning, D. S. Larsen and F. E. Osterloh, Chemistry of Materials 22 (3), 1220-1228 (2009).
    126. K. Domen, S. Naito, T. Onishi, K. Tamaru and M. Soma, The Journal of Physical Chemistry 86 (18), 3657-3661 (1982).
    127. K. Domen, S. Naito, M. Soma, T. Onishi and K. Tamaru, Journal of the Chemical Society, Chemical Communications (12), 543-544 (1980).
    128. K. Domen, S. Naito, T. Onishi and K. Tamaru, Chemical Physics Letters 92 (4), 433-434 (1982).
    129. A. Kudo, A. Tanaka, K. Domen and T. Onishi, Journal of Catalysis 111 (2), 296-301 (1988).
    130. K. Domen, A. Kudo, T. Onishi, N. Kosugi and H. Kuroda, The Journal of Physical Chemistry 90 (2), 292-295 (1986).
    131. Y. Qin, G. Wang and Y. Wang, Catalysis Communications 8 (6), 926-930 (2007).
    132. T. Takata and K. Domen, The Journal of Physical Chemistry C 113 (45), 19386-19388 (2009).
    133. H. Jeong, T. Kim, D. Kim and K. Kim, International Journal of Hydrogen Energy 31 (9), 1142-1146 (2006).
    134. H. Mizoguchi, K. Ueda, M. Orita, S.-C. Moon, K. Kajihara, M. Hirano and H. Hosono, Materials Research Bulletin 37 (15), 2401-2406 (2002).
    135. R. Abe, M. Higashi, Z. Zou, K. Sayama and Y. Abe, Chemistry Letters 33 (8), 954-955 (2004).
    136. M. Higashi, R. Abe, K. Sayama, H. Sugihara and Y. Abe, Chemistry Letters 34 (8), 1122-1123 (2005).
    137. A. Kudo and H. Kato, Chemical Physics Letters 331 (5–6), 373-377 (2000).
    138. H. Kato, K. Asakura and A. Kudo, Journal of the American Chemical Society 125 (10), 3082-3089 (2003).
    139. A. Iwase, H. Kato, H. Okutomi and A. Kudo, Chemistry Letters 33 (10), 1260-1261 (2004).
    140. A. Yamakata, T.-a. Ishibashi, H. Kato, A. Kudo and H. Onishi, The Journal of Physical Chemistry B 107 (51), 14383-14387 (2003).
    141. K. Sayama, H. Arakawa and K. Domen, Catalysis Today 28 (1–2), 175-182 (1996).
    142. Y. Huang, Y. Xie, L. Fan, Y. Li, Y. Wei, J. Lin and J. Wu, International Journal of Hydrogen Energy 33 (22), 6432-6438 (2008).
    143. H. Kato and A. Kudo, Chemical Physics Letters 295 (5–6), 487-492 (1998).
    144. K. Sayama and H. Arakawa, Journal of Photochemistry and Photobiology A: Chemistry 94 (1), 67-76 (1996).
    145. K. Sayama and H. Arakawa, Chemistry Letters 21 (2), 253-256 (1992).
    146. Y. Takahara, J. N. Kondo, T. Takata, D. Lu and K. Domen, Chemistry of Materials 13 (4), 1194-1199 (2001).
    147. H. Kato and A. Kudo, The Journal of Physical Chemistry B 105 (19), 4285-4292 (2001).
    148. K.-i. Shimizu, Y. Tsuji, T. Hatamachi, K. Toda, T. Kodama, M. Sato and Y. Kitayama, Physical Chemistry Chemical Physics 6 (5), 1064-1069 (2004).
    149. K.-i. Shimizu, S. Itoh, T. Hatamachi, T. Kodama, M. Sato and K. Toda, Chemistry of Materials 17 (20), 5161-5166 (2005).
    150. H. Kadowaki, N. Saito, H. Nishiyama, H. Kobayashi, Y. Shimodaira and Y. Inoue, The Journal of Physical Chemistry C 111 (1), 439-444 (2006).
    151. T. Yanagida, Y. Sakata and H. Imamura, Chemistry Letters 33 (6), 726-727 (2004).
    152. J. Sato, H. Kobayashi, N. Saito, H. Nishiyama and Y. Inoue, Journal of Photochemistry and Photobiology A: Chemistry 158 (2–3), 139-144 (2003).
    153. J. Sato, N. Saito, H. Nishiyama and Y. Inoue, The Journal of Physical Chemistry B 107 (31), 7965-7969 (2003).
    154. J. Sato, H. Kobayashi and Y. Inoue, The Journal of Physical Chemistry B 107 (31), 7970-7975 (2003).
    155. J. Sato, N. Saito, H. Nishiyama and Y. Inoue, The Journal of Physical Chemistry B 105 (26), 6061-6063 (2001).
    156. J. Sato, N. Saito, H. Nishiyama and Y. Inoue, Chemistry Letters 30 (9), 868-869 (2001).
    157. J. Sato, N. Saito, H. Nishiyama and Y. Inoue, Journal of Photochemistry and Photobiology A: Chemistry 148 (1–3), 85-89 (2002).
    158. G. R. Bamwenda, T. Uesigi, Y. Abe, K. Sayama and H. Arakawa, Applied Catalysis A: General 205 (1–2), 117-128 (2001).
    159. H. Kadowaki, N. Saito, H. Nishiyama and Y. Inoue, Chemistry Letters 36 (3), 440-441 (2007).
    160. J. F. Reber and K. Meier, The Journal of Physical Chemistry 88 (24), 5903-5913 (1984).
    161. T. Ohmori, H. Mametsuka and E. Suzuki, International Journal of Hydrogen Energy 25 (10), 953-955 (2000).
    162. K. Maeda, K. Teramura, N. Saito, Y. Inoue and K. Domen, Bulletin of the Chemical Society of Japan 80 (5), 1004-1010 (2007).
    163. J. Sato, N. Saito, Y. Yamada, K. Maeda, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen and Y. Inoue, Journal of the American Chemical Society 127 (12), 4150-4151 (2005).
    164. K. Maeda, N. Saito, Y. Inoue and K. Domen, Chemistry of Materials 19 (16), 4092-4097 (2007).
    165. M. Matsumura, Y. Saho and H. Tsubomura, The Journal of Physical Chemistry 87 (20), 3807-3808 (1983).
    166. J. S. Jang, U. A. Joshi and J. S. Lee, The Journal of Physical Chemistry C 111 (35), 13280-13287 (2007).
    167. D. Meissner, R. Memming and B. Kastening, The Journal of Physical Chemistry 92 (12), 3476-3483 (1988).
    168. D. Jing and L. Guo, The Journal of Physical Chemistry B 110 (23), 11139-11145 (2006).
    169. A. Kudo, K. Domen, K.-i. Maruya and T. Onishi, Chemical Physics Letters 133 (6), 517-519 (1987).
    170. K. Sayama and H. Arakawa, Journal of the Chemical Society, Faraday Transactions 93 (8), 1647-1654 (1997).
    171. S. Tabata, H. Nishida, Y. Masaki and K. Tabata, Catal. Lett. 34, 245 (1995).
    172. T. Takata, Y. Furumi, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo and K. Domen, Chem. Mater. 9, 1063 (1997).
    173. J. Kim, D. Hwang, H. Kim, S. Bae, J. Lee, W. Li and S. Oh, Top Catal 35 (3-4), 295-303 (2005).
    174. V. Reddy, D. Hwang and J. Lee, Korean Journal of Chemical Engineering 20 (6), 1026-1029 (2003).
    175. J. J. Zou, C. J. Liu and Y. P. Zhang, Langmuir 22, 2334 (2006).
    176. K. Ikarashi, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama and Y. Inoue, J. Phys. Chem. B 106, 9048 (2002).
    177. Y. Sakata, Y. Matsuda, T. Yanagida, K. Hirata, H. Imamura and K. Teramura, Catal. Lett. 125, 22 (2008).
    178. P. Ritterskamp, A. Kuklya, M.-A. Wustkamp, K. Kerpen, C. Weidenthaler and M. Demuth, Angewandte Chemie International Edition 46 (41), 7770-7774 (2007).
    179. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, Nat Mater 8 (1), 76-80 (2009).
    180. G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. Lu and H.-M. Cheng, Journal of the American Chemical Society 132 (33), 11642-11648 (2010).
    181. T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang and H. Teng, Advanced Functional Materials 20 (14), 2255-2262 (2010).
    182. K. Krishnamoorthy, R. Mohan and S. J. Kim, Applied Physics Letters 98 (24), 244101-244103 (2011).
    183. G. Liu, P. Niu, L. Yin and H.-M. Cheng, Journal of the American Chemical Society 134 (22), 9070-9073 (2012).
    184. http://en.wikipedia.org/wiki/Sunlight.
    185. A. Kubacka, M. Fernandez-Garcia and G. Colon, Chemical Reviews 112 (3), 1555-1614 (2011).
    186. W. Choi, A. Termin and M. R. Hoffmann, The Journal of Physical Chemistry 98 (51), 13669-13679 (1994).
    187. M. I. Litter, Applied Catalysis B: Environmental 23 (2–3), 89-114 (1999).
    188. D. Dvoranova, V. Brezova, M. Mazur and M. A. Malati, Applied Catalysis B: Environmental 37 (2), 91-105 (2002).
    189. A. Hameed, M. A. Gondal and Z. H. Yamani, Catalysis Communications 5 (11), 715-719 (2004).
    190. A.-W. Xu, Y. Gao and H.-Q. Liu, Journal of Catalysis 207 (2), 151-157 (2002).
    191. A. Di Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda and B. Ohtani, The Journal of Physical Chemistry B 106 (3), 637-645 (2001).
    192. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, Y. Ichihashi, F. Goto, M. Ishida, T. Sasaki and M. Anpo, Journal of Synchrotron Radiation 8 (2), 569-571 (2001).
    193. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue and M. Anpo, Journal of Photochemistry and Photobiology A: Chemistry 148 (1–3), 257-261 (2002).
    194. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 293 (5528), 269-271 (2001).
    195. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Applied Catalysis A: General 265 (1), 115-121 (2004).
    196. K. Kobayakawa, Y. Murakami and Y. Sato, Journal of Photochemistry and Photobiology A: Chemistry 170 (2), 177-179 (2005).
    197. S.-Z. Chen, P.-Y. Zhang, D.-M. Zhuang and W.-P. Zhu, Catalysis Communications 5 (11), 677-680 (2004).
    198. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout and J. L. Gole, Nano Letters 3 (8), 1049-1051 (2003).
    199. Y. Cong, J. Zhang, F. Chen and M. Anpo, The Journal of Physical Chemistry C 111 (19), 6976-6982 (2007).
    200. M. Sathish, B. Viswanathan, R. P. Viswanath and C. S. Gopinath, Chemistry of Materials 17 (25), 6349-6353 (2005).
    201. M. Mrowetz, W. Balcerski, A. J. Colussi and M. R. Hoffmann, The Journal of Physical Chemistry B 108 (45), 17269-17273 (2004).
    202. M.-C. Yang, T.-S. Yang and M.-S. Wong, Thin Solid Films 469–470 (0), 1-5 (2004).
    203. G. R. Torres, T. Lindgren, J. Lu, C.-G. Granqvist and S.-E. Lindquist, The Journal of Physical Chemistry B 108 (19), 5995-6003 (2004).
    204. Z. Jiang, F. Yang, N. Luo, B. T. T. Chu, D. Sun, H. Shi, T. Xiao and P. P. Edwards, Chemical Communications (47), 6372-6374 (2008).
    205. D. Huang, S. Liao, S. Quan, L. Liu, Z. He, J. Wan and W. Zhou, Journal of Non-Crystalline Solids 354 (33), 3965-3972 (2008).
    206. J. Yuan, M. Chen, J. Shi and W. Shangguan, International Journal of Hydrogen Energy 31 (10), 1326-1331 (2006).
    207. Y. W. Sakai, K. Obata, K. Hashimoto and H. Irie, Vacuum 83 (3), 683-687 (2008).
    208. D.-G. Huang, S.-J. Liao, J.-M. Liu, Z. Dang and L. Petrik, Journal of Photochemistry and Photobiology A: Chemistry 184 (3), 282-288 (2006).
    209. Q. Ling, J. Sun and Q. Zhou, Applied Surface Science 254 (10), 3236-3241 (2008).
    210. M. Miyauchi, M. Takashio and H. Tobimatsu, Langmuir 20 (1), 232-236 (2003).
    211. Y. Gai, J. Li, S.-S. Li, J.-B. Xia and S.-H. Wei, Physical Review Letters 102 (3), 036402 (2009).
    212. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara and K. Takeuchi, Journal of Molecular Catalysis A: Chemical 161 (1), 205-212 (2000).
    213. T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto and S. Sugihara, Applied Catalysis B: Environmental 42 (4), 403-409 (2003).
    214. I. Justicia, G. Garcia, G. A. Battiston, R. Gerbasi, F. Ager, M. Guerra, J. Caixach, J. A. Pardo, J. Rivera and A. Figueras, Electrochimica Acta 50 (23), 4605-4608 (2005).
    215. K. Gurunathan, P. Maruthamuthu and M. V. C. Sastri, International Journal of Hydrogen Energy 22 (1), 57-62 (1997).
    216. K. B. Dhanalakshmi, S. Latha, S. Anandan and P. Maruthamuthu, International Journal of Hydrogen Energy 26 (7), 669-674 (2001).
    217. S. Kaur and V. Singh, Ultrasonics Sonochemistry 14 (5), 531-537 (2007).
    218. J. Moon, C. Y. Yun, K.-W. Chung, M.-S. Kang and J. Yi, Catalysis Today 87 (1–4), 77-86 (2003).
    219. Y. Bessekhouad, D. Robert and J. V. Weber, Journal of Photochemistry and Photobiology A: Chemistry 163 (3), 569-580 (2004).
    220. S. M. Ji, H. Jun, J. S. Jang, H. C. Son, P. H. Borse and J. S. Lee, Journal of Photochemistry and Photobiology A: Chemistry 189 (1), 141-144 (2007).
    221. W. Ho and J. C. Yu, Journal of Molecular Catalysis A: Chemical 247 (1–2), 268-274 (2006).
    222. K. Chiang, R. Amal and T. Tran, Advances in Environmental Research 6 (4), 471-485 (2002).
    223. L. Wu, J. C. Yu and X. Fu, Journal of Molecular Catalysis A: Chemical 244 (1–2), 25-32 (2006).
    224. P. V. Kamat, K. Tvrdy, D. R. Baker and J. G. Radich, Chemical Reviews 110 (11), 6664-6688 (2010).
    225. S.-C. Moon, H. Mametsuka, E. Suzuki and M. Anpo, Chemistry Letters 27 (2), 117-118 (1998).
    226. Y. Ebina, T. Sasaki, M. Harada and M. Watanabe, Chemistry of Materials 14 (10), 4390-4395 (2002).
    227. A. Sobczynski, A. Yildiz, A. J. Bard, A. Campion, M. A. Fox, T. Mallouk, S. E. Webber and J. M. White, The Journal of Physical Chemistry 92 (8), 2311-2315 (1988).
    228. M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi and K. Domen, Catalysis Today 78 (1–4), 555-560 (2003).
    229. N. Bao, L. Shen, T. Takata and K. Domen, Chemistry of Materials 20 (1), 110-117 (2007).
    230. H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi and C. Li, Journal of Catalysis 266 (2), 165-168 (2009).
    231. G. L. Chiarello, E. Selli and L. Forni, Applied Catalysis B: Environmental 84 (1–2), 332-339 (2008).
    232. I. Tsuji, H. Kato and A. Kudo, Chemistry of Materials 18 (7), 1969-1975 (2006).
    233. A. V. Korzhak, N. I. Ermokhina, A. L. Stroyuk, V. K. Bukhtiyarov, A. E. Raevskaya, V. I. Litvin, S. Y. Kuchmiy, V. G. Ilyin and P. A. Manorik, Journal of Photochemistry and Photobiology A: Chemistry 198 (2–3), 126-134 (2008).
    234. K. Gurunathan, International Journal of Hydrogen Energy 29 (9), 933-940 (2004).
    235. M. Liu, W. You, Z. Lei, G. Zhou, J. Yang, G. Wu, G. Ma, G. Luan, T. Takata, M. Hara, K. Domen and C. Li, Chemical Communications 0 (19), 2192-2193 (2004).
    236. M. Liu, W. You, Z. Lei, T. Takata, K. Domen and C. Li, Chinese Journal of Catalysis 27 (7), 556-558 (2006).
    237. Y. Ebina, N. Sakai and T. Sasaki, The Journal of Physical Chemistry B 109 (36), 17212-17216 (2005).
    238. T. Mitsuyama, A. Tsutsumi, T. Hata, K. Ikeue and M. Machida, Bulletin of the Chemical Society of Japan 81 (3), 401-406 (2008).
    239. A. Kudo, H. Okutomi and H. Kato, Chemistry Letters 29 (10), 1212-1213 (2000).
    240. F. Zhang, A. Yamakata, K. Maeda, Y. Moriya, T. Takata, J. Kubota, K. Teshima, S. Oishi and K. Domen, Journal of the American Chemical Society 134 (20), 8348-8351 (2012).
    241. K. Maeda, X. Wang, Y. Nishihara, D. Lu, M. Antonietti and K. Domen, The Journal of Physical Chemistry C 113 (12), 4940-4947 (2009).
    242. T. Abe, E. Suzuki, K. Nagoshi, K. Miyashita and M. Kaneko, The Journal of Physical Chemistry B 103 (7), 1119-1123 (1999).
    243. D. Duonghong, E. Borgarello and M. Graetzel, Journal of the American Chemical Society 103 (16), 4685-4690 (1981).
    244. T. Hisatomi, K. Miyazaki, K. Takanabe, K. Maeda, J. Kubota, Y. Sakata and K. Domen, Chemical Physics Letters 486 (4–6), 144-146 (2010).
    245. K. Maeda, K. Teramura, D. Lu, N. Saito, Y. Inoue and K. Domen, Angewandte Chemie International Edition 45 (46), 7806-7809 (2006).
    246. T. Mengkui, S. Wenfeng, Y. Jian, W. Shijie and O. Ziyuan, Science and Technology of Advanced Materials 8 (1-2), 82 (2007).
    247. D. W. Hwang, H. G. Kim, J. Kim, K. Y. Cha, Y. G. Kim and J. S. Lee, Journal of Catalysis 193 (1), 40-48 (2000).
    248. H. Husin, W.-N. Su, H.-M. Chen, C.-J. Pan, S.-H. Chang, J. Rick, W.-T. Chuang, H.-S. Sheu and B.-J. Hwang, Green Chemistry 13 (7), 1745-1754 (2011).
    249. L. Borrell, S. Cervera-March, J. Gimenez, R. Simarro and J. M. Andujar, Solar Energy Materials and Solar Cells 25 (1–2), 25-39 (1992).
    250. S. Wenfeng, Science and Technology of Advanced Materials 8 (1-2), 76 (2007).
    251. S. Cervera-March, L. Borrell, J. Gimenez, R. Simarro and J. M. Andujar, International Journal of Hydrogen Energy 17 (9), 683-688 (1992).
    252. M. Zalas and M. Laniecki, Solar Energy Materials and Solar Cells 89 (2–3), 287-296 (2005).
    253. B. Zielinska, E. Borowiak-Palen and R. J. Kalenczuk, International Journal of Hydrogen Energy 33 (7), 1797-1802 (2008).
    254. Y. Li, G. Lu and S. Li, Chemosphere 52 (5), 843-850 (2003).
    255. M. Machida, X. W. Ma, H. Taniguchi, J.-i. Yabunaka and T. Kijima, Journal of Molecular Catalysis A: Chemical 155 (1–2), 131-142 (2000).
    256. W. Erbs, J. Desilvestro, E. Borgarello and M. Graetzel, The Journal of Physical Chemistry 88 (18), 4001-4006 (1984).
    257. A. Kudo and S. Hijii, Chem. Lett. 28, 1103 (1999).
    258. Y. Shimodaira, H. Kato, H. Kobayashi and A. Kudo, The Journal of Physical Chemistry B 110 (36), 17790-17797 (2006).
    259. D. Wang, J. Tang, Z. Zou and J. Ye, Chem. Mater. 17, 5177 (2005).
    260. W. Yao and J. Ye, Chem. Phys. Lett. 450, 370 (2008).
    261. R. Konta, T. Ishii, H. Kato and A. Kudo, J. Phys. Chem. B 108, 8992 (2004).
    262. S. Nishimoto, M. Matsuda and M. Miyake, Chem. Lett. 35, 308 (2006).
    263. D. W. Hwang, H. G. Kim, J. S. Jang, S. W. Bae, S. M. Ji and J. S. Lee, Catal. Today 93−95, 845 (2004).
    264. Y. Hosogi, K. Tanabe, H. Kato, H. Kobayashi and A. Kudo, Chem. Lett. 33, 28 (2004).
    265. Y. Hosogi, H. Kato and A. Kudo, Chem. Lett. 35, 578 (2006).
    266. Y. Hosogi, Y. Shimodaira, H. Kato, H. Kobayashi and A. Kudo, Chem. Mater. 20, 1299 (2008).
    267. X. Huang, X. Qi, F. Boey and H. Zhang, Chemical Society Reviews 41 (2), 666-686 (2012).
    268. D. Chen, H. Feng and J. Li, Chemical Reviews 112 (11), 6027-6053 (2012).
    269. Y. Zhang, Z.-R. Tang, X. Fu and Y.-J. Xu, ACS Nano 5 (9), 7426-7435 (2011).
    270. X.-Y. Zhang, H.-P. Li, X.-L. Cui and Y. Lin, Journal of Materials Chemistry 20 (14), 2801-2806 (2010).
    271. Q. Xiang, J. Yu and M. Jaroniec, Journal of the American Chemical Society 134 (15), 6575-6578 (2012).
    272. Q. Xiang, J. Yu and M. Jaroniec, Chemical Society Reviews 41 (2), 782-796 (2012).
    273. G. Williams and P. V. Kamat, Langmuir 25 (24), 13869-13873 (2009).
    274. P. V. Kamat, The Journal of Physical Chemistry Letters 1 (2), 520-527 (2009).
    275. J. Zhang, J. Yu, M. Jaroniec and J. R. Gong, Nano Letters 12 (9), 4584-4589 (2012).
    276. Y. Hou, F. Zuo, A. Dagg and P. Feng, Nano Letters 12 (12), 6464-6473 (2012).
    277. X. Pan, Y. Zhao, S. Liu, C. L. Korzeniewski, S. Wang and Z. Fan, ACS Applied Materials & Interfaces 4 (8), 3944-3950 (2012).
    278. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin and Y. Xia, Chemical Reviews 111 (6), 3669-3712 (2011).
    279. R. Quidant and M. Kreuzer, Nat Nano 5 (11), 762-763 (2010).
    280. N. J. Halas, Nano Letters 10 (10), 3816-3822 (2010).
    281. Y. Harada, K. Imura, H. Okamoto, Y. Nishijima, K. Ueno and H. Misawa, Journal of Applied Physics 110 (10), 104306-104307 (2011).
    282. N. Lagos, M. M. Sigalas and E. Lidorikis, Applied Physics Letters 99 (6), 063304-063303 (2011).
    283. C. Nahm, H. Choi, J. Kim, D.-R. Jung, C. Kim, J. Moon, B. Lee and B. Park, Applied Physics Letters 99 (25), 253107-253104 (2011).
    284. A. E. Ostfeld and D. Pacifici, Applied Physics Letters 98 (11), 113112-113113 (2011).
    285. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang and M. A. Green, Journal of Applied Physics 109 (7), 073105-073108 (2011).
    286. K. V. Sreekanth, R. Sidharthan and V. M. Murukeshan, Journal of Applied Physics 110 (3), 033107-033105 (2011).
    287. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha and H. A. Atwater, Advanced Materials 13 (19), 1501-1505 (2001).
    288. D. B. Ingram, P. Christopher, J. L. Bauer and S. Linic, ACS Catalysis 1 (10), 1441-1447 (2011).
    289. S. T. Kochuveedu, D.-P. Kim and D. H. Kim, The Journal of Physical Chemistry C (2011).
    290. C. u. Gomes Silva, R. Juarez, T. Marino, R. Molinari and H. Garcia, Journal of the American Chemical Society 133 (3), 595-602 (2010).
    291. S. Linic, P. Christopher and D. B. Ingram, Nat Mater 10 (12), 911-921 (2011).
    292. S. C. Warren and E. Thimsen, Energy & Environmental Science 5 (1) (2012).
    293. Y. Wu, H. Liu, J. Zhang and F. Chen, The Journal of Physical Chemistry C 113 (33), 14689-14695 (2009).
    294. M. Moskovits, Science 332 (6030), 676-677 (2011).
    295. S. Mubeen, G. Hernandez-Sosa, D. Moses, J. Lee and M. Moskovits, Nano Letters 11 (12), 5548-5552 (2011).
    296. Y. Tian and T. Tatsuma, Journal of the American Chemical Society 127 (20), 7632-7637 (2005).
    297. L. Du, A. Furube, K. Yamamoto, K. Hara, R. Katoh and M. Tachiya, The Journal of Physical Chemistry C 113 (16), 6454-6462 (2009).
    298. F. Wang and N. A. Melosh, Nano Letters 11 (12), 5426-5430 (2011).
    299. A. Furube, L. Du, K. Hara, R. Katoh and M. Tachiya, Journal of the American Chemical Society 129 (48), 14852-14853 (2007).
    300. W. Hou, Z. Liu, P. Pavaskar, W. H. Hung and S. B. Cronin, Journal of Catalysis 277 (2), 149-153 (2011).
    301. K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida and T. Watanabe, Journal of the American Chemical Society 130 (5), 1676-1680 (2008).
    302. P. Christopher, D. B. Ingram and S. Linic, The Journal of Physical Chemistry C 114 (19), 9173-9177 (2010).
    303. H. Wang, T. You, W. Shi, J. Li and L. Guo, The Journal of Physical Chemistry C 116 (10), 6490-6494 (2012).
    304. Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang and P. Wang, Nano Letters (2012).
    305. W. S. Hummers and R. E. Offeman, Journal of the American Chemical Society 80 (6), 1339-1339 (1958).
    306. A. Mukherji, B. Seger, G. Q. Lu and L. Wang, ACS Nano 5 (5), 3483-3492 (2011).
    307. M. Yoshida, K. Takanabe, K. Maeda, A. Ishikawa, J. Kubota, Y. Sakata, Y. Ikezawa and K. Domen, The Journal of Physical Chemistry C 113 (23), 10151-10157 (2009).
    308. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang and C. Li, Journal of the American Chemical Society 130 (23), 7176-7177 (2008).
    309. K. Maeda and K. Domen, The Journal of Physical Chemistry Letters 1 (18), 2655-2661 (2010).
    310. Z. Zou, J. Ye, K. Sayama and H. Arakawa, Nature 414 (6864), 625-627 (2001).
    311. K. Domen, A. Kudo and T. Onishi, Journal of Catalysis 102 (1), 92-98 (1986).
    312. W. Lin, Appl. Phys. Lett. 89 (21), 211904 (2006).
    313. A. K. Geim and K. S. Novoselov, Nat Mater 6 (3), 183-191 (2007).
    314. A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa and A. Rousset, Carbon 39 (4), 507-514 (2001).
    315. Y. Sun, Q. Wu and G. Shi, Energy & Environmental Science 4 (4), 1113-1132 (2011).
    316. K. P. Loh, Q. Bao, G. Eda and M. Chhowalla, Nat Chem 2 (12), 1015-1024 (2010).
    317. P. V. Kamat, The Journal of Physical Chemistry Letters 2 (3), 242-251 (2011).
    318. D. R. Dreyer, H.-P. Jia, A. D. Todd, J. Geng and C. W. Bielawski, Organic & Biomolecular Chemistry 9 (21), 7292-7295 (2011).
    319. D. R. Dreyer, K. A. Jarvis, P. J. Ferreira and C. W. Bielawski, Polymer Chemistry 3 (3), 757-766 (2012).
    320. L. Jia, D.-H. Wang, Y.-X. Huang, A.-W. Xu and H.-Q. Yu, The Journal of Physical Chemistry C 115 (23), 11466-11473 (2011).
    321. Z. Xiong, L. L. Zhang, J. Ma and X. S. Zhao, Chemical Communications 46 (33), 6099-6101 (2010).
    322. Z. Xiong, L. L. Zhang and X. S. Zhao, Chemistry – A European Journal 17 (8), 2428-2434 (2011).
    323. X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie and X. Wang, Journal of the American Chemical Society 133 (11), 3693-3695 (2011).
    324. T.-F. Yeh, F.-F. Chan, C.-T. Hsieh and H. Teng, The Journal of Physical Chemistry C 115 (45), 22587-22597 (2011).
    325. D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chemical Society Reviews 39 (1), 228-240 (2010).
    326. R. J. W. E. Lahaye, H. K. Jeong, C. Y. Park and Y. H. Lee, Physical Review B 79 (12), 125435 (2009).
    327. S. Park and R. S. Ruoff, Nat Nano 4 (4), 217-224 (2009).
    328. Y. H. Ng, A. Iwase, N. J. Bell, A. Kudo and R. Amal, Catalysis Today 164 (1), 353-357 (2011).
    329. A. Iwase, Y. H. Ng, Y. Ishiguro, A. Kudo and R. Amal, Journal of the American Chemical Society 133 (29), 11054-11057 (2011).
    330. G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth and R. Mulhaupt, Journal of the American Chemical Society 131 (23), 8262-8270 (2009).
    331. W. Yu, H. Xie, X. Wang and X. Wang, Nanoscale Research Letters 6 (1), 1-7 (2011).
    332. D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chemical Society Reviews 39 (1) (2010).
    333. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon 45 (7), 1558-1565 (2007).
    334. H.-K. Jeong, Y. P. Lee, R. J. W. E. Lahaye, M.-H. Park, K. H. An, I. J. Kim, C.-W. Yang, C. Y. Park, R. S. Ruoff and Y. H. Lee, Journal of the American Chemical Society 130 (4), 1362-1366 (2008).
    335. O. Akhavan, M. Abdolahad, A. Esfandiar and M. Mohatashamifar, The Journal of Physical Chemistry C 114 (30), 12955-12959 (2010).
    336. V. H. Pham, T. V. Cuong, S. H. Hur, E. Oh, E. J. Kim, E. W. Shin and J. S. Chung, Journal of Materials Chemistry 21 (10), 3371-3377 (2011).
    337. Y. Qi, H. Qi, J. Li and C. Lu, Journal of Crystal Growth 310 (18), 4221-4225 (2008).
    338. V. M. Gonzalez-Delacruz, R. Pereniguez, F. Ternero, J. P. Holgado and A. Caballero, ACS Catalysis 1 (2), 82-88 (2011).
    339. C.-W. Tsai, H. M. Chen, R.-S. Liu, K. Asakura and T.-S. Chan, The Journal of Physical Chemistry C 115 (20), 10180-10186 (2011).
    340. S. Wenfeng, Science and Technology of Advanced Materials 8 (1-2), 76-81.
    341. S. Liu, E. Guo and L. Yin, Journal of Materials Chemistry (2012).
    342. J. Santiago-Morales, A. Aguera, M. d. M. Gomez, A. R. Fernandez-Alba, J. Gimenez, S. Esplugas and R. Rosal, Applied Catalysis B: Environmental 129 (0), 13-29 (2013).
    343. J. Zhu, F. Chen, J. Zhang, H. Chen and M. Anpo, Journal of Photochemistry and Photobiology A: Chemistry 180 (1–2), 196-204 (2006).
    344. S. Liu, E. Guo and L. Yin, Journal of Materials Chemistry 22 (11), 5031-5041 (2012).
    345. X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang and K. Klabunde, Journal of Catalysis 260 (1), 128-133 (2008).
    346. F. N. Sayed, O. D. Jayakumar, R. Sasikala, R. M. Kadam, S. R. Bharadwaj, L. Kienle, U. Schurmann, S. Kaps, R. Adelung, J. P. Mittal and A. K. Tyagi, The Journal of Physical Chemistry C 116 (23), 12462-12467 (2012).
    347. G. Liu, H. G. Yang, X. Wang, L. Cheng, J. Pan, G. Q. Lu and H.-M. Cheng, Journal of the American Chemical Society 131 (36), 12868-12869 (2009).
    348. A. K. Agegnehu, C.-J. Pan, J. Rick, J.-F. Lee, W.-N. Su and B.-J. Hwang, Journal of Materials Chemistry 22 (27), 13849-13854 (2012).
    349. F. Yao, F. Guneş, H. Q. Ta, S. M. Lee, S. J. Chae, K. Y. Sheem, C. S. Cojocaru, S. S. Xie and Y. H. Lee, Journal of the American Chemical Society 134 (20), 8646-8654 (2012).
    350. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan and J. R. Gong, Journal of the American Chemical Society 133 (28), 10878-10884 (2011).
    351. A. Du, Z. Zhu and S. C. Smith, Journal of the American Chemical Society 132 (9), 2876-2877 (2010).
    352. A. Du, S. Sanvito, Z. Li, D. Wang, Y. Jiao, T. Liao, Q. Sun, Y. H. Ng, Z. Zhu, R. Amal and S. C. Smith, Journal of the American Chemical Society 134 (9), 4393-4397 (2012).
    353. Y. Cao, W. Yang, W. Zhang, G. Liu and P. Yue, New Journal of Chemistry 28 (2), 218-222 (2004).
    354. E. Wang, W. Yang and Y. Cao, The Journal of Physical Chemistry C 113 (49), 20912-20917 (2009).
    355. J. Qiu, P. Zhang, M. Ling, S. Li, P. Liu, H. Zhao and S. Zhang, ACS Applied Materials & Interfaces 4 (7), 3636-3642 (2012).
    356. J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang and D. D. Sun, Advanced Functional Materials 20 (23), 4175-4181 (2010).
    357. T. Beuvier, M. Richard-Plouet and L. Brohan, The Journal of Physical Chemistry C 113 (31), 13703-13706 (2009).
    358. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, Journal of the American Chemical Society 133 (19), 7296-7299 (2011).
    359. S. Sahoo, A. K. Arora and V. Sridharan, The Journal of Physical Chemistry C 113 (39), 16927-16933 (2009).
    360. J. Bennaceur, R. Mechiakh, F. Bousbih, M. Jaouadi and R. Chtourou, Journal of Sol-Gel Science and Technology 61 (1), 69-76 (2012).
    361. Y. Yang, Q. Chen, Z. Yin and J. Li, Journal of Alloys and Compounds 488 (1), 364-369 (2009).
    362. Y. Ya-Hui, C. Qi-Yuan, Y. Zhou-Lan and L. Jie, Applied Surface Science 255 (20), 8419-8424 (2009).
    363. Y. Matsumoto, M. Koinuma, S. Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi and S. Ida, ACS Applied Materials & Interfaces 2 (12), 3461-3466 (2010).
    364. R. Dholam, N. Patel and A. Miotello, International Journal of Hydrogen Energy 36 (11), 6519-6528 (2011).

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE