簡易檢索 / 詳目顯示

研究生: 李偉丞
Wei-Cheng Li
論文名稱: 不同攜帶介質對合成氣產製程序的影響以及能源效益評估
Influence of Slurry Change with Syngas Synthesis Process and Energy analysis
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 錢義隆
I-Lung Chien
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 111
中文關鍵詞: 氣化爐合成氣氣化二氧化碳捕捉攜帶介質煤炭
外文關鍵詞: gasfier, IGCC, stnthesis gas, slurry, coal
相關次數: 點閱:290下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討兩種不同攜帶介質:水與二氧化碳在氣化複循環發電(Integrated Gasification Combined Cycle, IGCC)系統中對製程產製合成氣的影響與能源效益。研究中發現,因為水的高熱容量以及高氣化熱,這些熱力性質會導致氣化效率偏低。為了進一步提升氣化效率,液態二氧化碳煤漿系統 被提出使用在氣化複循環發電兼二氧化碳捕獲系統。
    本研究探討兩種不同攜帶介質:水與二氧化碳在氣化複循環發電(Integrated Gasification Combined Cycle, IGCC)系統中對製程產製合成氣的影響與能源效益。研究中發現,因為水的高熱容量以及高氣化熱,這些熱力性質會導致氣化效率偏低。為了進一步提升氣化效率,液態二氧化碳煤漿系統 被提出使用在氣化複循環發電兼二氧化碳捕獲系統。
    本研究使用Aspen Plus軟體所模擬之IGCC單元,包含了氣化爐、水氣轉移反應器、酸氣捕捉以及二氧化碳捕獲區塊。參考美國國家能源技術實驗室(NETL)於2010年的報告,重製其水煤漿系統的模型,而後將攜帶介質換成液態二氧化碳,並比較兩個系統間的差異性。結果顯示,在相同的煤炭轉化率下,二氧化碳煤漿系統的合成氣熱值較水煤漿系統提高了8.63 %,冷氣效率值提高了6.84 %。因此液態二氧化碳攜帶介質對於提升IGCC系統的氣化效率是有幫助的。此外,在氫氣產量部分,二氧化碳煤漿系統提高了約8 %,二氧化碳捕獲的量相對於水煤漿系統也增加了10 %。
    本研究也針對二氧化碳煤漿系統,分析了氣化爐中的主要參數(固體負載率、氧碳比)對IGCC系統的影響,結果顯示了在提高固體負載率以及氧碳比的情況下,合成氣熱值以及冷氣效率值皆是提高的。


    In this study, we discuss two slurry systems, water and liquid carbon dioxide, in an Integrated Gasification Combined Cycle process. And the influence of slurry change on syngas production and energy analysis. Because the high heat capacity and high enthalpy of vaporization of water, these would lead to a low efficiency in gasifier. In order to improve the gasification efficiency, liquid carbon dioxide, CO2(l) has been proposed instead of coal-water system in the IGCC system with carbon capture.
    Using Aspen Plus to simulation the IGCC process, including gasifier, water-gas shift reactor, acid gas removal and carbon dioxide capture. Reference to the National Energy Technology Laboratory (NETL) report in 2012, rebuild the coal-water slurry model. Then change the slurry medium to liquid CO2(l) and compare the differences between these two systems. The result shows that at the same coal conversion, the syngas HHV in CO2 slurry system is 8.63 % higher than water slurry system. The cold gas efficiency increased about 6.84 %. Therefore, liquid carbon dioxide slurry is helpful for enhancing the gasification efficiency. In addition, the H2 production in CO2 slurry system is 8 % higher than water slurry system, the amount of CO2 capture also increased about 10 %.
    This study also discusses the influence of main parameters of the gasifier in CO2 slurry system, such as solids loading, oxygen to carbon ratio. The results shows that increasing the solids loading and oxygen to carbon ratio will improve the syngas HHV and cold gas efficiency.

    目錄 致謝 摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 文獻回顧 1.2.1 氣化技術 1.2.2氣化複循環發電與二氧化碳捕捉系統 1.2.3 氣化爐 1.3 研究動機與目的 1.4 組織章節 第二章 系統熱力與反應動力模型 2.1 前言 2.2 熱力學 2.2.1 熱力學模式之挑選 2.3 反應動力學 2.4 結論 第三章 水煤漿系統之概念性設計 3.1 前言 3.2 概念性設計說明 3.2.1 攜帶介質 3.2.2 流程概念 3.3 氣化爐區塊架構介紹 3.3.1 煤炭簡介 3.3.2 氣化爐之概念設計 3.3.3 氣化爐模型 3.3.4 模擬結果與文獻比較 3.4 轉換反應器(shift reactor)區塊架構介紹 3.4.1 背景介紹 3.4.2 水氣轉移反應器模型 3.4.3 結果討論與比較 3.5 酸氣捕捉系統與二氧化碳捕捉 3.5.1 背景介紹 3.5.2 概念設計 3.5.3 酸氣捕捉系統模型 3.5.4 結果討論與分析 3.6 結論 第四章 二氧化碳攜帶介質對系統之影響與探討 4.1 前言 4.2 概念設計 4.3 模型建立 4.3.1 於水煤漿系統為相同的碳轉換率下,二氧化碳煤漿系統的結果比較 4.3.2 於相同煤碳轉化率下,改變固體負載率對系統的影響 4.3.3 於相同固體負載率下,改變進料氧氣量對系統的影響 4.4 結論 結論 Reference 附錄

    Reference
    (1) IEA, Key world energy statistics 2014
    (2) 能源局,102年度年報
    (3) 台灣電力公司,http://www.taipower.com.tw/
    (4) 徐恆文,煤炭氣化發電之能源優勢,能源資訊網,2004年
    (5) 黃正忠,台灣淨煤技術發展現況與展望,2007年
    (6) http://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/lpmeoh-process
    (7) http://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/ftsynthesis
    (8) Fischer, F.; Tropsch, H. The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen, Brennstoff Chem, 1923, 4, 276-285
    (9) National Energy Technology Laboratory. Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity. November 2010; www.netl.doe.gov.
    (10) Breault, R. W. Gasification Processes Old and New: A Basic Review of the Major Technologies. Energies 2010, 3, 216−240.Field,
    (11) Field, R. P.; Brasington, R. Baseline Flowsheet Model for IGCC with Carbon Capture. Ind. Eng. Chem. Res. 2011, 50, 11306−11312.
    (12) Wu, Y.; Zhang, J.; Smith, P.; Zhang, H.; Reid, C.; Lv, J.; Yue, G. Three-Dimensional Simulation for an Entrained Flow Coal Slurry Gasifier. Energy Fuels 2010, 24 (2), 1156 – 1163.

    (13) Monaghan, R. F. D.; Ghoniem, A. F. A Dynamic Reduced Order Model for Simulating Entrained Flow Gasifiers. Part I_Model development and description. Fuel 2012, 91, 61−80.
    (14) Kumar, M.; Ghoniem, A. F. Multiphysics Simulations of Entrained Flow Gasification. Part II: Constructing and Validating the Overall Model. Energy Fuels 2011 , 26 (1), 464−479
    (15) Westbrook, C. K.; Dryer, F. L. Simplified mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol.1981, 27, 31–43.
    (16) Jones, W.; Lindstedt, R. Global reaction schemes for hydro-carbon combustion. Combust. Flame 1988, 73 (3), 233-249.
    (17) Svoronos, P. D. N.; Bruno, T. J. Carbonyl sulfide: a review of its chemistry and properties. Ind. Eng. Chem. Res. 2002, 41, 5321-5336.
    (18) Woods, M. C.; Capicotto, P. J.; Haslbeck, J. L.; Kuehn, N. J.; Matuszewski, M.; Pinkerton, L. L. Cost and Performance Baseline for Fossil Energy Plants; Report DOE/NETL-2007/1281; U.S. Department of Energy, National Energy Technology Laboratory: 2007.
    (19) Higman, C.; van der Burgt, M. Gasification, 2nd ed.; Elsevier: 2008.
    (20) Peirson, J. F. J.; Burje, W. J.; Santhanam, C. J. Investigation of Low-Rank-Coal-Liquid Carbon Dioxide Slurries; Report AP-4849; EPRI: 1986.
    (21) Dooher, J. P.; Castaldi, M. J.; Rubin, D.; Phillips, J. N.; Schoff, R. Evaluation of Low Rank Coal/Liquid CO2 Slurries for Generic, Single- Stage, Slurry-Fed Gasifiers. 35th International Technical Conference of Coal Utilization and Fuel Systems, Clearwater, Florida (USA) 2010
    (22) Dooher, J.; Phillips, J. Program on Technology Innovation: Advanced Concepts in Slurry-Fed Low-Rank Coal Gasification. Liquid CO2/Coal Slurries and Hot Water Drying; Report 1014432; EPRI: 2006.
    (23) Robinson, P. J.; Luyben, W. L. Simple dynamic gasifier model that runs in Aspen Dynamics. Ind. Eng. Chem. Res. 2008, 47, 7784–7792.
    (24) Wen, C. Y.; Chaung, T. Z. Entrainment Coal Gasification Modeling. Ind. Eng. Chem. Process Des. Dev. 1979 ,18, 684-694.
    (25) Seo, M. W.; Goo, J. H.; Kim, S. D.; Lee, S. H.; Choi, Y. C. Gasification characteristics of coal/biomass blend in a dual circulating fluidized bed reactor. Energy Fuels 2010, 24, 3108–3118.
    (26) Kasule, J. S.; Turton, R.; Bhattacharyya, D.; Zitney, S. E. Mathematical Modeling of a Single-Stage, Downward-Firing, En-trained-Flow Gasifier. Ind. Eng. Chem. Res. 2012, 51(18), 6429−6440.
    (27) Haldor Topsoe, “SSK catalyst Sulphur resistant/sour water-gas shift catalyst,”
    (28) Botero, C.; Field, R. P.; Brasington, R. D.; Herzog, H. J.; Ghoniem, A. F. Performance of an IGCC Plant with Carbon Capture and Coal-C02˜Slurry Feed: Impact of Coal Rank, Slurry Loading, and Syngas Cooling Technology. Industrial & Engineering Chemistry Research 2012, 51(36), 11778-11790.

    (29) Robinson, P. J.; Luyben, W. L. Integrated gasification combined cycle dynamic model: H2\S absorption/stripping, water-gas shift reactors, and CO2 absorption/stripping. Ind. Eng. Chem. Res. 2010, 49(10), 4766–4781.
    (30) Bhattacharyya, D.; Turton, R.; Zitney, S. Steady-State Simulation and Optimization of an Integrated Gasification Combined Cycle Power Plant with CO2 Capture. Ind. Eng. Chem. Res. 2011, 50, 1674–1690.e
    (31) Muehlen, H. J.; van Heek, K. H.; Juentgen, H. Kinetic studies of steam gasification of char in the presence of H2, CO2 and CO. Fuel 1985, 64, 944−949.
    (32) Roberts, D. G.; Harris, D. J. Char Gasification with O2, CO2, and H2O: Effects of Pressure on Intrinsic Reaction Kinetics. Energy Fuels 2000, 14, 483−489.
    (33) Netzsch Group. http://www.netzsch.com (accessed January 11, 2012).
    (34) Atesok, G.; Boylu, F.; Sirkeci, A. A.; Dincer, H. The effect of coal properties on the viscosity of coal-water slurries. Fuel 2002, 81, 1855−1858.
    (35) http://www.cpc.com.tw/big5/content/index01.asp?sno=1869&pno=389

    QR CODE