簡易檢索 / 詳目顯示

研究生: 郭柄麟
Bing-Lin Kuo
論文名稱: 漿料特性分析於矽晶片線鋸切割影響研究
Slurry Analysis for Wire Sawing of Silicon Wafers
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 趙崇禮
Chao-Choung Lii
左培倫
Pei-Lum Tso
林原慶
Yuan-Ching Lin
鄭裕隆
Yu Lung Jeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 164
中文關鍵詞: 複線式線鋸切割太陽能電池矽基板粒徑分佈模擬漿料耐用係數
外文關鍵詞: multi-wire sawing, silicon substrate of solar cell, slurry durable index
相關次數: 點閱:270下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著地球資源日益減少,替代能源的開發越顯重要,太陽能電池即為目前替代能源研發重點之一,其中矽基太陽能電池所使用材料即為由複線式線鋸切割製程(multi-wire sawing process)所生產的單、多晶矽基板。本研究主要目的在於評估游離磨料複線式線切割所使用之漿料的可用性與切片製程對矽材料之移除率(material removal rate, MRR),以降低製程成本。本實驗設定兩組切割參數(S1、S2)實際鋸切多晶矽晶錠,量測其鋸切前後磨料粒徑分佈變化後,以機率理論中的常態分佈來建立粒徑分佈模擬程式(particle size distribution simulation program, PDSP),並以漿料含矽量與粒徑分佈變異係數(coefficient of variation, CV)來定義及計算漿料耐用係數(slurry durable index, SDI)。此外,本研究亦將漿料溫度的影響導入線鋸切割模式(wire sawing model, WSM)修正模擬材料移除率(MRR)。由實驗結果可知,漿料耐用係數與漿料重量、基板厚度與導輪溝槽間距比值呈反比,而與漿料內粒徑分佈標準差成正比。本研究所建立之粒徑分佈模擬程式(PDSP),未來可運用在模擬不同粉末之混粉粒徑分佈,而漿料耐用係數(SDI)可用來評估漿料壽命,提升製程競爭力。


    Multi-wire sawing process with slurry has been popularly adopted for wafer slicing of silicon substrates for solar cells. This research is to develop a slurry durable index(SDI)to define the slurry life time, and add slurry viscosity and temperature into the wire sawing model(WSM)to improve the simulation accuracy of material removal rate(MRR). There have been set two sawing parameters of free abrasive sawing process to cut the multi-crystalline silicon ingots. Investigating the silicon substrates (roughness, total thickness variation and subsurface damage), the measured results are to define the affects of grits to wafers’ quality and the slurry life time after sawing. Calculation of SDI can be obtained by particle size analyzer to measure the particle size distribution(PSD)before and after wire sawing. The viscosimeter is used to measure the slurry viscosity with temperature and estimated the working grits number by immersing the wire into slurry at different temperature to improve the MRR. The result of SDI is 3.581 and proportion with particle size deviation of slurry. The slurry weight and ratio of wafer thickness to roller groove pitch is in inverse proportion. Results of this paper can be used to estimate the slurry life time and for maintaining the TTV under the desired specifications of silicon substrates for cost efficiency.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 XVII 符號表 XX 第一章 緒論 1 1-1研究背景 1 1-2研究目的與方法 5 1-3論文架構 6 第二章 文獻回顧 9 2.1硬脆材料破壞模式探討 9 2.2線鋸切割製程文獻回顧 14 2.3線鋸切割製程相關專利分析 24 2.4文獻回顧總結 28 第三章 製程分析與機率理論介紹 31 3.1游離磨料線鋸切割製程分析 31 3.2機率分佈理論介紹 35 3.2.1機率分佈模式選定 35 3.2.2常態分配 39 3.2.3算數平均數(Arithmetic mean)與中位數(Median) 40 3.2.4變異係數( The coefficient of Variation , CV) 42 3.2.5偏度(Skewness)與峰度(Kurtosis) 43 3.3粉末混合平均粒徑預估 45 3.3.1實驗數據預估粉末混和粒徑分佈 45 3.3.2常態分佈預估粉末混和粒徑分佈 46 3.4模擬程式介紹 46 3.4.1程式一 46 3.4.2程式二 47 3.5矽切屑含量與粒徑預估 48 3.5.1矽切屑含量推導 49 3.5.2漿料可切晶錠長度估算 51 3.5.3矽切屑粒徑預估 52 3.5.4磨耗後碳化矽粒徑 54 3.5.5磨料工作粒徑與體積估算 54 3.5.6漿料耐用係數定義(Slurry Durable Index, SDI) 56 3.6材料移除率估算 57 3.6.1磨料沉降速率估算 58 3.6.2磨料披覆量估算 58 3.6.3沾覆鋼線之各別磨料體積與顆粒數 59 3.6.4有效加工磨料數 59 3.6.5漿料膜厚度 59 3.6.6平均材料移除率估算 61 3.6.7實際材料移除率估算 64 3.7材料特性介紹 65 3.7.1矽晶錠(多晶矽) 65 3.7.2磨料(碳化矽) 70 3.7.3載液(聚乙烯乙二醇Polyethylene Glycol, PEG) 72 3.7.4切割鋼線 74 3.8製程分析與理論介紹總結 77 第四章 實驗規劃與方法 78 4.1實驗設備 79 4.2量測設備介紹 81 4.2.1掃描式電子顯微鏡(SEM) 81 4.2.2表面輪廓儀 81 4.2.3雷射粒徑分析儀 82 4.2.4轉子型數位黏度計 83 4.3矽基板機械性質量測 84 4.3.1矽基板表面粗糙度量測 84 4.3.2矽基板總厚度變化量量測(TTV) 86 4.3.3矽基板次表面破壞深度量測 87 4.4漿料粒徑量測 90 4.5漿料披覆量量測 92 4.6實驗規劃與方法總結 93 第五章 實驗結果與討論 95 5.1不同粉徑對切割後矽基板品質之影響 95 5.1.1漿料粒徑量測 95 5.1.2表面粗糙度 98 5.1.3總厚度變化量 101 5.1.4次表面破壞深度 104 5.2漿料耐用係數與可切割長度結果 108 5.2.1漿料分佈分析 108 5.2.2矽切屑含量 109 5.2.3極限切割長度 111 5.2.4漿料耐用係數(SDI) 112 5.3矽切屑與磨耗後碳化矽粒徑結果 115 5.3.1矽切屑平均粒徑 115 5.3.2磨耗後磨料平均粒徑與臨界工作粒徑 118 5.4溫度對漿料黏度與磨料披覆量之影響 124 5.4.1有效加工磨料數 124 5.4.2漿料膜厚度 127 5.4.3磨料沉降速率 128 5.5材料移除率模擬結果 129 5.5.1模擬材料移除率 130 5.5.2實際材料移除率 132 5.5.3材料移除率誤差比對 132 5.5.4模擬材料移除率驗證 135 第六章 結論與建議 136 6.1結論 136 6.2建議 137 參考文獻 138 附錄A機台規格 143 附錄B微小維克氏硬度量測值 144 附錄C漿料粒徑分佈 146 附錄D漿料沾覆鋼線之重量量測 156 附錄E程式操作說明 158 作者簡介 163

    [1]林明獻,"太陽電池技術入門",全華圖書,2007年。
    [2]拓墣產業研究所,2007年8月。
    [3]威富光電股份有限公司,台灣,2007年。
    [4]H.J. Möller, C. Funke, “Multicrystalline silicon for solar cells”, Journal of Thin Solid Films, 487, 179– 187,2005.
    [5]H.J. Möller, “Basic mechanisms and models of multi-wire sawing”, Advanced Engineering Materials, No. 7, 501-513, 2004.
    [6]C. P. Chen, M.H. Leipold, “Fracture toughness of silicon”, American Ceramic Society, Vol. 59, 469-472, 1980.
    [7]G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements”, Journal of the American Ceramic Society, Vol. 64, No. 9, 533-538, 1981.
    [8]P. Chantikul, G.R. Anstis, B.R. Lawn, D.B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: II, strength method”, Journal of the American Ceramic Society, Vol. 64, No. 9, 539-543, 1981.
    [9]D.B. Marshall, B.R. Lawn, A.G. Evans, “Elastic/Plastic indentation damage in ceramics: the lateral crack system”, Journal of the American Ceramic Society, Vol. 65, NO.11, 561-566, 1982.
    [10]M. Buijs, K. Korpel, “Three-body abrasion of brittle materials as studied bu lapping”, Wear, 166, 237-245, 1993.

    [11]M.A.Verspui, M. Buijs, “Bed thickness and particle size distribution in three-body abrasion”, Wear,188, 102-107, 1995.
    [12]S.Malkin, T.W. Hwang, “Grinding mechanisms for ceramics”, Annals of the ClRP , Vol. 45, pp.569-580, 1996.
    [13]B.Bhushen, “Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices”, Journal of Materials Science, 12, 54-63, 1997.
    [14]陳啟宗,”機械性質與加工條件對硬脆材料刻劃加工之影響”,國立成功大學機械工程研究所碩士論文,2004年。
    [15]S.D. Aylin, G. Mustafa, “Microhardness and fracture toughness of dental materials by indentation Method”, Wiley Inter Science, 257-264, 2005.
    [16]H.T. Young, H.T. Liao, “Novel method to investigate the critical depth of cut of ground silicon wafer”, Journal of Materials Processing Technology, Vol.182, 157–162, 2007.
    [17]工研院產業經濟與趨勢研究中心,2008年4月。
    [18]宋應星,天工開物,中國社會出版社,2004。
    [19]F. Yang, I. Kao, “Free abrasive machining in slicing brittle materials with wire saw ”, Transaction of the ASME, vol.123, 254-259, 2001.
    [20]廖運炫,許春耀,”脆性材料線鋸切割”,機械工業雜誌,122-129,2002年5月。
    [21]左培倫,鄭嘉葳,”晶圓切割技術-固定磨粒鑽石線鋸切割研究”,機械工業雜誌,37-41,2005年。
    [22]T. Shibata, K. Shinohara, “Lapping performance guide of poly-crystal diamond particles through morphological analysis ”, Diamond and Related Materials, Vol.10, 376-382,2001.
    [23]S. Nishijima, Y. Izumi, “Recycling of abrasive from wasted slurry by superconducting magnetic separation”, IEEE transactions on applied superconductivity, vol.13, 1596-1599, 2003.
    [24]陳建民,”鑽石線鋸切割碳化矽與氧化鋁陶瓷材料之特性研究”,清華大學動力機械工程學系碩士論文,2003年。
    [25]沈岳文,”游離再生磨粒線切割加工對矽晶圓品質特性之影響”,國立雲林科技大學機械工程研究所碩士論文,2004年。
    [26]J. M. Kim, Y. K. Kim, “Saw-Damage-Induced structural defects on the surface of silicon crystals“, Journal of the Electrochemical Society” , Vol.152, 189-192, 2005.
    [27]D. Kray, M. Schumann, “Solar wafer sling with loose and fixed grains” , IEEE, 948-951, 2006.
    [28]K.I. Ishikawa, H. Suwabe, S.I. Itoh, “Study on slurry actions in slicing groove and slicing characteristics at multi-wire saw”, Conference of Taiwan Society for Abrasive Technology,2006.
    [29]G. Du, L. Zhou, “Hard inclusion and their detrimental effects on the wire sawing process of multi-crystalline silicon”, Solar Energy Materials & Solar Cells, Vol.91, 1743-1748,2007.
    [30]Z.H. Cheng, C.K. Xu, “The vibration and control of multi-wire saw”, IEEE, 735-738, 2007.
    [31]梁峻碩,“線鋸切割太陽能基板之研究“,國立台灣科技大學機械工程研究所碩士論文,2008年。
    [32]S. Imakurusu, T. Hoshiyama, “Ultra-wafer slicing porocess and diamond wire saw for solar cell“, The Taiwan Society for Abrasive Technology Conference, 2008。
    [33]M. A. Costantini, J. A. Talbott, “Method and apparatus for improved wire saw slurry”, United States Patent, Number: 6,113,473, 2000.
    [34]C. Hauser, “Wire saw with means for producing a relative reciprocating motion between the work-piece to be sawn and the wire”, United States Patent, Number: 6,886,550 B2, 2005.
    [35]K. Kajimoto, “Slurry recycling method”, United States Patent, Number: 6,929,537 B2, 2005.
    [36]C. Zavattari, G. Fragiacomo, “Method for treating exhausted glycol-based slurry”, United States Patent, Number: 7,223,344 B2, 2007.
    [37]T. Kawasaki, H. Tsuruta, “Multi-wire saw”, United States Patent, Number: 7,306,508 B2, 2007.
    [38]C.C.A. Chen, Handout of manufacturing analysis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2006.
    [39]J.G. Beesley , ”Process Technology for wire sawing”, Meyer Burger company (www.meyerburger.ch).
    [40]劉明德、柳克婷等人,”統計學”,全華圖書,2007年。
    [41]陳耀茂,“統計學精析”,全威圖書,2002年。
    [42]鄧禮堂,“單元操作實驗”,協志圖書,1976年。
    [43]S. Venkatachalam, “Predictive Modeling For Ductile Machining of Brittle Materials”, Georgia Institute of Technology, 2007.
    [44]王建文,“糖反應幾丁聚醣/聚乙二醇生醫可降解性高分子之製備與生物評估”,國立成功大學材料與科學工程研究所博士論文,2004年。
    [45]Mastersizer 2000 User Manual, Malvern Instruments Ltd., 2007.

    QR CODE