簡易檢索 / 詳目顯示

研究生: Bandiyah Sri Aprillia
Bandiyah Sri Aprillia
論文名稱: Above 10% Efficient Earth-abundant Cu2ZnSn(S,Se)4 Solar Cells with Introducing Alkali Metal Fluoride Electron-Selective Contacts
Above 10% Efficient Earth-abundant Cu2ZnSn(S,Se)4 Solar Cells with Introducing Alkali Metal Fluoride Electron-Selective Contacts
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
郭東昊
Dong-Hau Kuo
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 51
中文關鍵詞: 銅鋅錫硫硒鹼金屬氟化物電子擇優性接觸太陽能電池
外文關鍵詞: CZTSSe, Alkali metal fluoride layers, electron-selective contact, solar cell
相關次數: 點閱:312下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅鋅錫硫硒是一種地球元素含量豐富且無毒的化合物,並適合應用於薄膜太陽能電池,亦是一種能夠替代過往商業化的金屬硫族化合物(如碲化鎘和銅銦鎵硒)。根據文獻可知,目前最好的銅鋅錫硫硒太陽能電池(吸收能隙為1.13電子伏特),其效率約為12.6%,遠低於銅銦鎵硒的22.6%。若從光學能隙的觀點剖析,可研判兩者的性能差異可能是源自於大的電壓缺陷(0.62伏特)。為了克服這個問題,通常會在諸如提高吸收層成效、改變能隙位置或是改良太陽能電池層間界面等方向進行探討,以提升銅鋅錫硫硒太陽能電池的性能。在本研究中,我們簡單地在緩衝層和透明導電電極(銦錫氧化物)之間引入界面鹼金屬氟化物層(約幾奈米厚的氟化鈉和氟化鋰),而製備出不添加額外50奈米氧化鋅層的太陽能電池。從10個電池的平均測量結果顯示,添加鹼金屬氟化物層的太陽能電池轉換效率可從30.77±0.54 提高到9.68±0.5%,短路電流密度從30.1±0.3 mA/cm2提高到32.2±0.2 mA/cm2,開路電壓從400±20 mV提高到480±10 mV,以上是使用鹼金屬氟化物層改質ITO作為電子選擇性界面的結果。其後,我們利用凱爾文探針進行ITO的功函數測量確認,其數值從4.82 eV分別降低到3.39 eV(利用氟化鈉修飾) 或 3.65eV(利用氟化鋰修飾),表示鹼金屬氟化物層即可進行更加有利的能隙對齊,協助頂部電極上的電子收集(或電洞阻擋) 形成歐姆接面(亦是電子擇優性接觸),進而降低 ITO/CdS 接面的電阻,從 2.1到 0.4 Ω.cm2 (NaF) /0.6 Ω.cm2 (LiF)。而根據變溫電流密度與電壓測量,顯示具有鹼金屬氟化物層的元件接觸電壓損耗將會降低,此種現象亦會導致隱開路電壓達900 meV(原始元件為740 meV)。總結而言,本論文針對鹼金屬氟化物層進行厚度依賴性相關研究,最終獲得10.4%效率的銅鋅錫硫硒太陽能電池(其開路電壓為490 mV、短路電流密度為32.8 mA/cm2及填充因數則為63.2%)。


    Cu2ZnSn(S,Se)4 (CZTSSe) is an earth-abundant and non-toxic alternative compound investigated for the purpose of replacing commercialized metal chalcogenides (i.e., CdTe and Cu(In,Ga)(S,Se)2) thin-film solar cells. The current efficiency of the CZTSSe champion solar cells is 12.6% with the absorber’s bandgap (Eg) of 1.13 eV, much lower than the 22.6% efficiency of its Cu(In,Ga)(S,Se)2 counterpart. This considerable performance disparity is caused by a large voltage deficit, 0.62 V, compared to the optical band gap. The VOC deficit issue in CZTSSe solar cells, influenced by band gap fluctuations from non-uniform S/Se distributions and Cu/Zn disorders, has been investigated. Besides band gap fluctuation, the contact loss due to mismatches of the work function is one of the key issues that limits VOC. In order to overcome this problem to boost the performance of CZTSSe based photovoltaics, many efforts have been applied to improving the quality of absorbers, band alignments, front and back interfaces/contacts.
    This thesis demonstrated highly efficient CZTSSe solar cells by simply introducing the interfacial alkali metal fluoride (AMF) layers (~ several nm NaF, and LiF) between the buffer layers (i.e., CdS) and the front transparent conductive electrodes (i.e., ITO) without extra ZnO layers to modify the ITO work function. Kelvin probe measurements confirm that the work function of the front ITO decreases from 4.82 eV to 3.39 eV (NaF) / 3.65 eV (LiF), which corresponds with the establishment of better Ohmic contacts and decreased contact resistances between CdS and ITO, from 1.99 Ω.cm2 to 0.40 Ω.cm2 (NaF) / 0.60 Ω.cm2 (LiF). They create a beneficial band alignment for electron collection (or hole blocking) on top electrodes which help to reduce interface recombination due to contact losses. According to the temperature-dependent current density-voltage measurement, the AMF based devices show reduced contact voltage loss, leading to larger implied VOC values of 900 meV, compared with the 740 meV of pristine devices. Consequently, all the solar cell parameters, including JSC, VOC, FF, RS, and RSH, are improved. Finally, the 10.4% efficient CZTSSe solar cells were achieved by simply introducing NaF as electron selective contacts.

    Abstract i 摘要 iii Acknowledgements v Table of Contents vi List of Figures vii List of Tables ix Chapter I Introduction 1 1.1. Background of Study 1 1.2. Motivation 9 1.3. Purpose 10 Chapter II Alkali Metal Fluoride Electron-selective Contact 11 2.1. Introduction 11 2.2. Experimental Details 14 2.3. Results and Discussion 17 Chapter III Conclusions and Future Outlook 41 3.1. Conclusions 41 3.2. Future Outlook 42 References 43

    1. Shah. A, Torres. P, Tscharner. R, Wyrsch. N, Keppner. H, Photovoltaic technology: the case for thin-film solar cells. science, 1999. 285(5428): p. 692-698.
    2. Moskowitz. P, and V.M. Fthenakis, Environmental, health and safety issues associated with the manufacture and use of II–VI photovoltaic devices. Solar cells, 1991. 30(1-4): p. 89-99.
    3. Moskowitz. P.D., Environmental, health and safety issues related to the production and use of CdTe photovoltaic modules. International journal of solar energy, 1992. 12(1-4): p. 259-281.
    4. Fthenakis. V, and P. Moskowitz, Thin‐film Photovoltaic Cells: Health and Environmental Issues in their Manufacture Use and Disposal. Progress in Photovoltaics: Research and Applications, 1995. 3(5): p. 295-306.
    5. Fthenakis. V, and P. Moskowitz, Photovoltaics: environmental, health and safety issues and perspectives. Progress in photovoltaics: research and applications, 2000. 8(1): p. 27-38.
    6. Scragg. J. J, Dale. P. J, Peter. L. M, Zoppi. G, Forbes. I, New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material. physica status solidi (b), 2008. 245(9): p. 1772-1778.
    7. Green. M. A, Hishikawa. Y, Warta. W, Dunlop. E. D, Levi. D. H, Hohl‐Ebinger. J, Ho‐Baillie. A. W, Solar cell efficiency tables (version 50). Progress in Photovoltaics: Research and Applications, 2017. 25(7): p. 668-676.
    8. Bhandari. K. P, Collier. J. M, Ellingson. R. J, Apul. D. S, Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis. Renewable and Sustainable Energy Reviews, 2015. 47: p. 133-141.
    9. Green, M.A., Third generation photovoltaics: solar cells for 2020 and beyond. Physica E: Low-dimensional Systems and Nanostructures, 2002. 14(1): p. 65-70.
    10. Service, R., Solar Cells. Devices team up to boost solar power. Science (New York, NY), 2015. 347(6219): p. 225.
    11. Freitag. M, Teuscher. J, Saygili. Y, Zhang. X, Giordano. F, Liska. P, Hagfeldt. A, Dye-sensitized solar cells for efficient power generation under ambient lighting. 2017.
    12. Luque. A, and A. Martí, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 1997. 78(26): p. 5014.
    13. Feltrin. A, and A. Freundlich, Material considerations for terawatt level deployment of photovoltaics. Renewable energy, 2008. 33(2): p. 180-185.
    14. Tao. C, J. Jiang, and M. Tao, Natural resource limitations to terawatt solar cell deployment. ECS Transactions, 2011. 33(17): p. 3-11.
    15. Delbos. S, Kësterite thin films for photovoltaics: a review. EPJ Photovoltaics, 2012. 3: p. 35004.
    16. Shockley. W, and H.J. Queisser, Detailed balance limit of efficiency of p‐n junction solar cells. Journal of applied physics, 1961. 32(3): p. 510-519.
    17. Chen. W. C, Chen, C. Y, Tunuguntla. V, Lu. S. H, Su. C, Lee. C. H, Che. L. C, Enhanced solar cell performance of Cu 2 ZnSn (S, Se) 4 thin films through structural control by using multi-metallic stacked nanolayers and fast ramping process for sulfo-selenization. Nano Energy, 2016. 30: p. 762-770.
    18. Patel. M, and A. Ray, Enhancement of output performance of Cu 2 ZnSnS 4 thin film solar cells—a numerical simulation approach and comparison to experiments. Physica B: Condensed Matter, 2012. 407(21): p. 4391-4397.
    19. Adachi. S, Earth-Abundant Materials for Solar Cells: Cu2-II-IV-VI4 Semiconductors. 2015: John Wiley & Sons.
    20. Michaelson. H.B, The work function of the elements and its periodicity. Journal of applied physics, 1977. 48(11): p. 4729-4733.
    21. Kim. J, Hiroi. H, Todorov. T. K, Gunawan. O, Kuwahara. M, Gokmen. T, Wang. W, High efficiency Cu2ZnSn (S, Se) 4 solar cells by applying a double In2S3/CdS emitter. Advanced Materials, 2014. 26(44): p. 7427-7431.
    22. Wang. W, Winkler. M. T, Gunawan. O, Gokmen. T, Todorov. T. K, Zhu. Y, Mitzi. D. B, Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency. Advanced Energy Materials, 2014. 4(7).
    23. Jackson. P, Wuerz. R, Hariskos. D, Lotter. E, Witte. W, Powalla. M, Effects of heavy alkali elements in Cu (In, Ga) Se2 solar cells with efficiencies up to 22.6%. physica status solidi (RRL)-Rapid Research Letters, 2016. 10(8): p. 583-586.
    24. Bourdais. S, Choné. C, Delatouche. B, Jacob. A, Larramona. G, Moisan. C, Walsh. A, Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Advanced Energy Materials, 2016. 6(12).
    25. Kaur. K. N. Kumar, and M. Kumar, Strategic review of interface carrier recombination in earth abundant Cu-Zn-Sn-S-Se solar cells: Current challenges and future prospective. Journal of Materials Chemistry A, 2017.
    26. Mitzi. D. B, Gunawan. O, Todorov. T. K, Barkhouse. D. A. R, Prospects and performance limitations for Cu–Zn–Sn–S–Se photovoltaic technology. Phil. Trans. R. Soc. A, 2013. 371(1996): p. 20110432.
    27. Bory. B. F, Rocha. P. R, Janssen. R. A, Gomes. H. L, De Leeuw. D. M, Meskers. S. C, Lithium fluoride injection layers can form quasi-Ohmic contacts for both holes and electrons. Applied Physics Letters, 2014. 105(12): p. 150_1.
    28. Wan. Y, Samundsett. C, Yan. D, Allen. T, Peng. J, Cui. J, Cuevas. A, A magnesium/amorphous silicon passivating contact for n-type crystalline silicon solar cells. Applied Physics Letters, 2016. 109(11): p. 113901.
    29. Fan. R, Huang. Y, Wang. L, Li. L, Zheng. G, Zhou. H, The Progress of Interface Design in Perovskite‐Based Solar Cells. Advanced Energy Materials, 2016. 6(17).
    30. Yang. X, Bi. Q, Ali. H, Davis. K, Schoenfeld. W. V, Weber. K, High‐Performance TiO2‐Based Electron‐Selective Contacts for Crystalline Silicon Solar Cells. Advanced Materials, 2016. 28(28): p. 5891-5897.
    31. Lee. T.-W, K.-G. Lim, D.-H. Kim, Approaches toward efficient and stable electron extraction contact in organic photovoltaic cells: Inspiration from organic light-emitting diodes. Electronic Materials Letters, 2010. 6(1): p. 41-50.
    32. Mihailetchi. V. D, Blom. P. W. M, Hummelen. J. C, Rispens. M. T, Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells. Journal of Applied Physics, 2003. 94(10): p. 6849-6854.
    33. Brabec. C.J, N.S. Sariciftci, J.C. Hummelen, Plastic solar cells. Advanced functional materials, 2001. 11(1): p. 15-26.
    34. Brabec. C. J, Cravino. A, Meissner. D, Sariciftci. N. S, Fromherz. T, Rispens. M. T, Hummelen. J. C, Origin of the open circuit voltage of plastic solar cells. Advanced Functional Materials, 2001. 11(5): p. 374-380.
    35. Hsu. W, Sutter-Fella. C. M, Hettick. M, Cheng. L, Chan. S, Chen. Y, Javey. A, Electron-Selective TiO2 Contact for Cu (In, Ga) Se2 Solar Cells. Scientific reports, 2015. 5.
    36. Rao. H. S, Chen. B. X, Li. W. G, Xu. Y. F, Chen. H. Y, Kuang. D. B, Su, C. Y, Improving the extraction of photogenerated electrons with SnO2 nanocolloids for efficient planar perovskite solar cells. Advanced Functional Materials, 2015. 25(46): p. 7200-7207.
    37. Ke. W, Fang. G, Wan. J, Tao. H, Liu. Q, Xiong. L, Qin, M, Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nature communications, 2015. 6.
    38. Qin. L, Xie. Z, Yao. L, Yan. Y, Pang. S, Wei. F, Qin. G. G, Enhancing the efficiency of TiO2–perovskite heterojunction solar cell via evaporating Cs2CO3 on TiO2. physica status solidi (RRL)-Rapid Research Letters, 2014. 8(11): p. 912-916.
    39. Hu. Q, Wu. J, Jiang. C, Liu. T, Que. X, Zhu. R, Gong. Q, Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. ACS nano, 2014. 8(10): p. 10161-10167.
    40. Ballif. C, A. Cuevas, A. Javey, E cient silicon solar cells with dopant-free asymmetric heterocontacts. Nature Energy, 2016. 1: p. 15031
    41. Shaheen. S. E, Jabbour. G. E, Morrell. M. M, Kawabe. Y, Kippelen. B, Peyghambarian. N, Armstrong. N. R, Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode. Journal of applied physics, 1998. 84(4): p. 2324-2327.
    42. Jiang. X, Xu. H, Yang. L, Shi. M, Wang. M, Chen. H, Effect of CsF interlayer on the performance of polymer bulk heterojunction solar cells. Solar Energy Materials and Solar Cells, 2009. 93(5): p. 650-653.
    43. Jönsson. S. K. M, Carlegrim. E, Zhang. F, Salaneck. W. R, Fahlman. M, Photoelectron spectroscopy of the contact between the cathode and the active layers in plastic solar cells: the role of LiF. Japanese journal of applied physics, 2005. 44(6R): p. 3695.
    44. Hegedus. S.S. and W.N. Shafarman, Thin‐film solar cells: device measurements and analysis. Progress in Photovoltaics: Research and Applications, 2004. 12(2‐3): p. 155-176.
    45. Eisenbarth. T, Unold. T, Caballero. R, Kaufmann. C. A, Schock. H. W, Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu (In, Ga) Se 2 thin film solar cells. Journal of Applied Physics, 2010. 107(3): p. 034509.
    46. Igalson. M, Zabierowski. P, Prządo. D, Urbaniak. A, Edoff. M, Shafarman. W. N, Understanding defect-related issues limiting efficiency of CIGS solar cells. Solar energy materials and solar cells, 2009. 93(8): p. 1290-1295.
    47. Lany. S. and A. Zunger, Light-and bias-induced metastabilities in Cu (In, Ga) Se 2 based solar cells caused by the (V Se-V Cu) vacancy complex. Journal of Applied Physics, 2006. 100(11): p. 113725.
    48. Burgelman. M, Engelhardt. F, Guillemoles. J. F, Herberholz. R, Igalson. M, Klenk. R, Parisi. J, Defects in Cu (In, Ga) Se 2 semiconductors and their role in the device performance of thin‐film solar cells. Progress in Photovoltaics, 1997. 5(2): p. 121-130.
    49. Djebbour. Z, Darga. A, Dubois. A. M, Mencaraglia. D, Naghavi. N, Guillemoles. J. F, Lincot. D, Admittance spectroscopy of cadmium free CIGS solar cells heterointerfaces. Thin solid films, 2006. 511: p. 320-324.
    50. Köntges. M, Reineke-Koch. R, Nollet. P, Beier. J, Schäffler. R, Parisi. J, Light induced changes in the electrical behavior of CdTe and Cu (In, Ga) Se 2 solar cells. Thin Solid Films, 2002. 403: p. 280-286.
    51. Park. H, H.S. Koh, D.J. Siegel, First-Principles Study of Redox End Members in Lithium–Sulfur Batteries. The Journal of Physical Chemistry C, 2015. 119(9): p. 4675-4683.
    52. Lindberg. G, Larsson. A, Råberg. M, Boström. D, Backman. R, Nordin. A, Determination of thermodynamic properties of Na 2 S using solid-state EMF measurements. The Journal of Chemical Thermodynamics, 2007. 39(1): p. 44-48.
    53. Larsson. A, Nordin. A, Backman. R, Warnqvist. B, Eriksson. G, Influence of black liquor variability, combustion, and gasification process variables and inaccuracies in thermochemical data on equilibrium modeling results. Energy & fuels, 2006. 20(1): p. 359-363.
    54. Halas. S. and T. Durakiewicz, Work functions of elements expressed in terms of the Fermi energy and the density of free electrons. Journal of Physics: Condensed Matter, 1998. 10(48): p. 10815.
    55. Williams. B. L, Smit. S, Kniknie. B. J, Bakker. K. J, Keuning. W, Kessels. W. M. M, Creatore. M, Identifying parasitic current pathways in CIGS solar cells by modelling dark J–V response. Progress in Photovoltaics: Research and Applications, 2015. 23(11): p. 1516-1525.
    56. Ishizuka. S, Sakurai. K, Yamada. A, Matsubara. K, Fons. P, Iwata. K, Kojima. T, Fabrication of wide-gap Cu (In 1− xGax) Se 2 thin film solar cells: a study on the correlation of cell performance with highly resistive i-ZnO layer thickness. Solar energy materials and solar cells, 2005. 87(1): p. 541-548.
    57. Nagoya. Y, Sang. B, Fujiwara. Y, Kushiya. K, Yamase. O, Improved performance of Cu (In, Ga) Se 2-based submodules with a stacked structure of ZnO window prepared by sputtering. Solar energy materials and solar cells, 2003. 75(1): p. 163-169.
    58. Misic. B, Pieters. B. E, Theisen. J. P, Gerber. A, Rau. U, Shunt mitigation in ZnO: Al/i‐ZnO/CdS/Cu (In, Ga) Se2 solar modules by the i‐ZnO/CdS buffer combination. physica status solidi (a), 2015. 212(3): p. 541-546.
    59. Mitchell. K.W, A.L. Fahrenbruch, R.H. Bube, Evaluation of the CdS/CdTe heterojunction solar cell. Journal of Applied Physics, 1977. 48(10): p. 4365-4371.
    60. El Tayyan. A.A, A New Method to Extract the Electrical Parameters from Dark IV: T Experimental Data of Cds/Cu (In, Ga) Se2 Interface.
    61. Tai. K. F, Gunawan. O, Kuwahara. M, Chen. S, Mhaisalkar. S. G, Huan. C. H. A, Mitzi. D. B, Fill Factor Losses in Cu2ZnSn (SxSe1− x) 4 Solar Cells: Insights from Physical and Electrical Characterization of Devices and Exfoliated Films. Advanced Energy Materials, 2016. 6(3).
    62. Liu. X. and J. Sites, Solar‐cell collection efficiency and its variation with voltage. Journal of Applied Physics, 1994. 75(1): p. 577-581.
    63. Senga. R. and K. Suenaga, Single-atom electron energy loss spectroscopy of light elements. Nature communications, 2015. 6.
    64. Decock. K, S. Khelifi, M. Burgelman, Modelling multivalent defects in thin film solar cells. Thin Solid Films, 2011. 519(21): p. 7481-7484.
    65. Verschraegen. J. and M. Burgelman, Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS. Thin Solid Films, 2007. 515(15): p. 6276-6279.
    66. Vet. B, Grancic. B, Isabella. O, Solntsev. S, Zeman. M, Optical and electrical simulations of advanced silicon based solar cell devices. in Proceedings of the 24th European Photovoltaic Solar Energy Conference. 2009.
    67. Williams. B. L, Major. J. D, Bowen. L, Phillips. L, Zoppi. G, Forbes. I, Durose. K, Challenges and prospects for developing CdS/CdTe substrate solar cells on Mo foils. Solar Energy Materials and Solar Cells, 2014. 124: p. 31-38.
    68. Frisk. C, Platzer-Björkman. C, Olsson. J, Szaniawski. P, Wätjen. J. T, Fjällström. V, Edoff, M, Optimizing Ga-profiles for highly efficient Cu (In, Ga) Se2 thin film solar cells in simple and complex defect models. Journal of Physics D: Applied Physics, 2014. 47(48): p. 485104.
    69. Frisk. C, Modeling and electrical characterization of Cu (In, Ga) Se2 and Cu2ZnSnS4 solar cells. 2017, Doctoral dissertation, Acta Universitatis Upsaliensis.
    70. Simya. O, A. Mahaboobbatcha, K. Balachander, Compositional grading of CZTSSe alloy using exponential and uniform grading laws in SCAPS-ID simulation. Superlattices and Microstructures, 2016. 92: p. 285-293.
    71. Michaelson. H.B., Relation between an atomic electronegativity scale and the work function. IBM Journal of research and development, 1978. 22(1): p. 72-80.
    72. Patterson. T. A, Hotop. H, Kasdan. A, Norcross. D. W, Lineberger. W. C, Resonances in Alkali Negative-Ion Photodetachment and Electron Affinities of the Corresponding Neutrals. Physical Review Letters, 1974. 32(5): p. 189.
    73. Andeen. C, J. Fontanella, D. Schuele, Low-frequency dielectric constant of LiF, NaF, NaCl, NaBr, KCl, and KBr by the method of substitution. Physical Review B, 1970. 2(12): p. 5068.
    74. Mills Jr. A, and W.S. Crane, Emission of Band-Gap-Energy Positrons from Surfaces of LiF, NaF, and Other Ionic Crystals. Physical Review Letters, 1984. 53(22): p. 2165.
    75. Simya. O, A. Mahaboobbatcha, K. Balachander, A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices and Microstructures, 2015. 82: p. 248-261.
    76. Kaur. K, N. Kumar, M. Kumar, Strategic review of interface carrier recombination in earth abundant Cu–Zn–Sn–S–Se solar cells: current challenges and future prospects. Journal of Materials Chemistry A, 2017. 5(7): p. 3069-3090.
    77. Xiao. T, Cui. W, Cai. M, Liu. R, Anderegg. J. W, Shinar. J, Shinar. R, Thin air-plasma-treated alkali fluoride layers for improved hole extraction in copper phthalocyanine/C70-based solar cells. Journal of Photonics for Energy, 2012. 2(1): p. 021006-1-021006-11.
    78. Kim. J. S, Park. J. H, Lee. J. H, Jo. J, Kim. D. Y, Cho. K, Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics. Applied Physics Letters, 2007. 91(11): p. 112111.
    79. Hegedus. S.S. and B.E. McCandless, CdTe contacts for CdTe/CdS solar cells: effect of Cu thickness, surface preparation and recontacting on device performance and stability. Solar energy materials and solar cells, 2005. 88(1): p. 75-95.

    QR CODE