簡易檢索 / 詳目顯示

研究生: 劉建賢
Chien-hsien Liu
論文名稱: 製作新型雙層微透鏡光學薄膜應用於提升太陽能板效率之研究
Fabrication of new dual-layer microlens optical film applied to enhance the efficiency of solar panel
指導教授: 趙振綱
Ching-kong Chao
林宗鴻
Tsung-hung Lin
口試委員: 張瑞慶
Rwei-ching Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 108
中文關鍵詞: 聚光太陽能電池菲涅爾方程式微透鏡陣列
外文關鍵詞: Concentrator Photovoltaic, Fresnel equation, microlens array
相關次數: 點閱:275下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種新的光學薄膜結構為雙層微透鏡,利用熱熔法方式搭配CNC數值控制加工機與澆注PDMS翻模製程來製作,此光學薄膜具有高廣角接收的有效入射角度,故可以增加太陽光的吸收,即達到提升太陽能板之效率。然而,此雙層微透鏡光學薄膜包括第一與第二之透明材料層。第一是底層透明材料層有一個平面與弧面所組成的,其弧面座落於兩平面之相對位置上,第二是上層透明材料層則上表面具有複數個相互平行的微結構。經光學模擬軟體模擬入射角0°~85°分析結合穩健化分析出最佳尺寸,根據模擬結果得知雙層微透鏡光學薄膜是最好的,且雙層微透鏡比單層微透鏡或無雙層微透鏡陣列,對於總平均光照值與光吸收效率增益具有提升之優勢。最後,將此光學薄膜放置於太陽能板上來進行效能檢測,可以得到裝置雙層長圓柱狀微透鏡又比無裝置雙層長圓柱狀微透鏡光學薄膜下,太陽能板總光電流之增益約為12.58%且在側向光時,其增益值較大。此外,量測結果與模擬比較下,其結果有良好的一致性。


    This thesis presents a new optical film with PDMS dual-layer microlens by using thermal reflow, CNC machining machine and PDMS replica process for an solar panel package is fabricated, by which method the receiving wide-angle incident light and the light absorption efficiency of a solar panel can be enhanced. The light-concentrating film includes a first and a second transparent material layers. The first transparent material layer has a flat surface and a cambered surface located at the opposite side of the flat surface. The second transparent material layer has an upper surface having a plurality of microstructures parallel with each other. The various parameters of the microlens are analyzed and characterized. The profile of the microlens was determined by using a commercial optical simulation software. Based on the simulated result, the optical film with the dual-layer microlens has the better total average illuminance value and the optical absorption efficiency than the single-layer microlens array and no dual-layer microlens. Finally, the films with microlens array are attached to an solar cell to measure their total photocurrent gain. The optical film with dual-layer microlens of the solar panel is total photocurrent gain of about 12.58%. In addition, the measured results are compared with simulated ones. They show good agreement with each other.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 符號索引 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池簡介 3 1.3 太陽能電池種類 3 1.4 太陽能電池構造與發電原理 6 1.5 太陽能電池最主要考慮因素 7 1.6 文獻回顧 10 1.6.1 透鏡型 10 1.6.2 非透鏡型 16 1.7 微透鏡之介紹與製程 19 1.7.1 微透鏡之介紹 19 1.7.2 微透鏡之製程 20 1.8 研究動機與目的 28 1.9 論文架構 28 第二章 基礎理論 30 2.1 幾何光學 30 2.2 Fresnel方程式與Fresnel 損失 33 2.3 TracePro光學模擬軟體介紹 34 第三章 雙層微透鏡之光學模擬設計 36 3.1 模擬與實驗規劃 36 3.2 光學模擬軟體Trace Pro操作流程 37 3.3 光學模擬 39 3.3.1 建立幾何模型 39 3.3.2 定義太陽光光源參數 41 3.3.3 雙層微透鏡之條件設定 45 3.3.4 雙層微透鏡之模擬機制 46 3.3.5 雙層微透鏡之參數設計 46 3.4 田口方法分析介紹 49 第四章 雙層微透鏡模擬之光學模擬結果 51 4.1 光學模擬結果 51 4.1.1 單層長圓柱狀微透鏡與雙層長圓柱狀微透鏡陣列結果比較 51 4.1.2 大顆微透鏡高度(H) 53 4.1.3 小顆微透鏡高度(h) 56 4.1.4 不同形狀雙層微透鏡結構之結果比較 62 4.1.5 田口方法分析雙層平行長圓柱狀微透鏡陣列結果 65 4.1.6 貢獻度分析 79 4.2 光學模擬結果討論 80 第五章 PDMS雙層微透鏡光學薄膜製作 81 5.1 黃光微影製程 81 5.2 PDMS雙層微透鏡光學薄膜 89 5.3 實驗量測設備 92 5.4 實驗結果與討論 93 5.5 光學檢測 95 第六章 結論與未來展望 102 6.1 結論 102 6.2 未來展望 103 參考文獻 105 作者簡介 108

    [1] 綠色能源特展,http://www3.nstm.gov.tw/green/01_about_a.html
    [2] 杜紫宸、詹文男,2015年台灣重要產業技術發展藍圖II,工業技術研究院產業經濟與趨勢研究中心、資訊工業策進會資訊市場情報中心與拓墣產業研究所,台北,2008。
    [3] 林明獻,太陽電池技術入門,全華圖書股份有限公司,台北,2008。
    [4] 莊嘉琛,太陽能工程-太陽電池篇,全華科技圖書股份有限公司,台北,1997。
    [5] 廖曰淳,銅銦鎵硒薄膜太陽能電池技術與應用趨勢,工業技術研究院,台北,2008。
    [6] 陳定鼎,太陽光電系統原理介紹,工業技術研究院太陽光電科技中心,台北,2008。
    [7] 郭毅娜,「氧化鋅奈米線於染料敏化太陽能電池的應用」,碩士論文,國立台南大學,台南 (2011)。
    [8] 楊俊英,太陽光電能源應用,工業技術研究院太陽光電科技中心,台北,2008。
    [9] 馮垛生,太陽能發電原理與應用,五南圖書出版有限公司,台北,2009。
    [10] G.R. Whitfield, R.W. Bentley, C.K. Weatherby, A.C. Hunt, H.D. Mohring, F.H. Klotz, P. Keuber, J.C.M. Ano and E.A. Garvi, “The Development and Testing of Small Concentrating PV Systems,” Solar Energy, Vol. 67, pp. 23–34, (1999).
    [11] 張心豪,「微透鏡陣列製作全天太陽能電池」,碩士論文,國立清華大學,新竹 (2006)。
    [12] K. Tvingstedt, S.D. Zilio, O. Inganas and M. Tormen, “Trapping light with micro lenses in thin film organic photovoltaic cells,” Optical Society of America, Vol. 16, pp. 81-90, (2008).
    [13] J.H. Karp, E.J. Tremblay and J.E. Ford, “Planar micro-optic solar concentrator,” Vol. 18, No. 2 Optics Express, pp. 1122-1133, (2010).
    [14] 林冠宇,「提升光捕捉模組吸收效率於太陽能電池之模擬研究」,碩士論文,國立中興大學,台中 (2011)。
    [15] J.K. Tseng, Y.J. Chen, C.T. Pan, T.T. Wu, and H. Chung, “Application of optical film with micro-lens array on a solar concentrator,” Sol. Energy, doi:10.1016 /j.solener. 2011.06.004, (2011).
    [16] S.J. Byun, S.Y. Byun, J. Lee, J.W. Kim, T.S. Lee, W.M. Kim, Y.K. Park and K. Cho, “An optical simulation algorithm based on ray tracing technique for light absorption in thin film solar cells,” Solar Energy Materials & Solar Cell, Vol. 95, pp. 408-411, (2011).
    [17] J. Zhao, A. Wang, and M.A. Green, “19.8% Efficient‘‘Honeycomb’’ Textured Multicrystalline and 24.4% MonocrystallineSilicon Solar Cells,” Applied Physics Letter, Vol. 73, No. 14, 5 October (1998).
    [18] M.A. Green, J. Zhao, A. Wang, and S.R. Wenham, “Progress and outlook for high-efficiency crystalline silicon solar sells,” Solar Energy Materials & Solar Cells, Vol. 65, pp. 9-16, (2001).
    [19] D. Feuermann and J.M. Gordon, “High-concentration photovoltaic designs based on miniature parabolic dishes,” Solar Energy, Vol.70 pp. 423-430, (2001).
    [20] M. Yamaguchi, T. Takamoto, and K. Araki, “Super high-efficiency multi-junction and concentrator solar cells,” Solar Energy Materials & Solar Cells, Vol. 90, p.p. 3068–3077, (2006).
    [21] M. Peters, J.C. Goldschmidt, T. Kirchartz and B. Blasi, “The photonic light trap—improved light trapping in solar cells by angularly selective filters,” Solar Energy Materials & Solar Cells , Vol. 93, pp. 1721– 1727, (2009).
    [22] T. Shiono, K. Setsune, O. Yamazaki, and K. Wasa, “Rectangular-apertured micro-Fresnel lens arrays fabricated by electron-beam lithography,” Applied Optics, Vol. 26, No. 3, pp. 587-591, (1987).
    [23] Z.D. Popovic, R.A. Sprague, and G.A.N. Connell, “Technique For Monolithic Fabrication of Microlens Arrays,” Appl. Opt. Vol. 27, No.7, pp. 1281-1297, (1988).
    [24] F.T. O’Neill, J.T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik 113, No. 9, pp. 391–404, (2002).
    [25] N.F. Borrelli, D.L. Morse, R.H. Bellman, and W.L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” APPLIED OPTICS / Vol. 24, No. 16 / 15 August, pp. 2520–2525, (1985).
    [26] W.R. Cox, “Micro-Optics Fabrication by Ink-Jet Printing,” Optics & Photonics News, pp. 32-35, (2001).
    [27] 余承謙,「薄膜折射式微透鏡陣列模仁之製程研發」,碩士論文,國立中正大學,嘉義 (2006)。
    [28] 劉俊宏,「微透鏡仿生複眼影像擷取系統之研究」,碩士論文,國立中興大學,台中 (2010)。
    [29] 丁勝懋,雷射工程導論,中央圖書出版社,台北 ,1985。
    [30] Fresnel’s Equations for Reflection and Reflaction, http://www.teknik.uu.se/ftf/education/ftf2/Optics_FresnelsEqns.pdf
    [31] Derivation of Fresnel Equations,
    http://www.sjsu.edu/faculty/beyersdorf/Archive/Phys158F06/9-12%20Fresnel%20Equations.pdf
    [32] 訊技科技,Trace Pro快速學習手册,,五南圖書出版有限公司,台北,2007。
    [33] APIC 愛發股份有限公司,http://www.apic.com.tw/products/cax_tracepro.html
    [34] 顏丞鋒,「半球微透鏡抗反射層太陽能電池之分析」,碩士論文,國立中山大學,高雄 (2010)。
    [35] N. Chronis, G.L. Liu, K.H. Jeong, L.P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,”Optics express, Vol. 11, No. 19,September (2003).
    [36] 國立成功大學工程科學系,田口方法概述,台南,2000。http://doc.mbalib.com/view/2b8816770e952923a66993ad1e3e9166.html
    [37] K. Weible, O. Weible, CH. Neuchatel, Switzerland, “Refractive microlenses for ultra-flat photolithographic projection systems,” In Micromachining Technology for Micro-Optics, Vol. 4179 (2000)
    [38] 張季娜,田口式品質工程導論,中華民國品質管制學會,台北,2003。
    [39] 闕明珠,「微透鏡陣列製程分析」,碩士論文,國立中央大學,桃園 (2005)。
    [40] 林哲平,「以微影製程開發新型光學微透鏡陣列模仁之研究」,博士論文,國立台灣科技大學,台北 (2004)。

    QR CODE