簡易檢索 / 詳目顯示

研究生: 李中毅
Chung-Yi Lee
論文名稱: 奈米生物高分子複合材料之電化學性質與其對藥物活性成分檢測效能
Assembly of biopolymer-based nanocomposites for enhanced detection of active pharmaceutical ingredients via electrochemical approach
指導教授: 洪伯達
Po-Da Hong
口試委員: 戴子安
Chi-An Dai
劉正哲
Cheng-Che Liu
蔡協致
Hsieh-Chih Tsai
江少華
Adhimoorthy Prasannan
洪伯達
Po-Da Hong
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 100
中文關鍵詞: 二硫化鉬乙醯丁洛爾氨氯地平多巴胺海藻酸β-環糊精
外文關鍵詞: MoS2, Acebutolol, Amlodipine, Dopamine, Sodium alginate, Cyclodextrin
相關次數: 點閱:166下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,藥物活性成分(API)被大量發現在人體及我們的生態系統,並且造成各種慢性以及急性的負面影響,已被現代的環境汙染議題所重視。而發展高敏感度,高選擇度及低檢測限制的監測方式是很重要的。在本文中,相較於現有其他的檢測方式,以電化學為基礎的監測技術具備低成本,易於使用及高敏感度的優勢。為了要充分發揮以電化學技術來檢測藥物活性成分,以奈米材料改變電極表面是一個重要的技術。因此在這本論文裡,我著重於以生物高分子材料為基礎,將其與二維度MoS2結合後形成之功能性複合物,進而改變電極表面特性,使其對於特定藥物活性成分能有高選擇性以及高敏感度的檢測結果,這也是我博士研究的主要工作。在本論文的第一章節做詳細的介紹後,第二章將介紹實驗的部分。

    在第三章,我們將含有兒茶酚的聚合物海藻酸鈉 (SA) 和多巴胺 (DA)反應,結合分層化(Exfoliation)二硫化鉬(MoS2)後,使DA自己聚合,形成具功能性的奈米生物高分子複合物 (MoS2/SA-PDA),以此材料改變電極(GCE)表面並以電化學方式檢測一種常見的高選擇性心臟用藥,Acebutolol(ACE),一種乙型受體阻斷劑(β-blocker)。我們以光譜、顯微鏡等分析技術對MoS2/SA-PDA 奈米複合材料進行測試,並評估其電催化性能。接著我們透過循環伏安法(Cyclic Voltametric technique, CV) and和差分脈衝伏安法(Differential Pulse Voltametric techniques, DPV)測試了以MoS2/SA-PDA 奈米複合材料修飾電極用於檢測心臟選擇性 β 受體阻滯劑藥物ACE 的電催化行為。ACE 的氧化尖峰電流所產生掃描率,濃度和PH值的影響可用來優化判斷。而MoS2/SA-PDA 奈米複合電極的電化學活性則歸因於SA、PDA 和 MoS2 在協同效應中功能基的存在和表現。儘管存在 類似的干擾化合物的存在環境下,MoS2/SA-PDA 奈米複合修飾電極表現出令人讚嘆的電催化活性,具有更寬的線性響應範圍(0.009 至 520 μM)、低檢測限制(5 nM)和更好的靈敏度(0.354 μA μM-1cm-2)。

    第四章中,我們以一種兼具環保、簡便、和通用的方法,在 2D 奈米片上結合自組織氧化還原聚合物用以修飾電極並以電化學測定 1,4-二氫吡啶類化合物,一種抗高血壓藥物,即氨氯地平(AMD)的測定。以天然的咖啡酸作為前驅體,透過 1, 4-邁克爾加成反應聚合。左旋精氨酸的氧化劑和胺功能基協同促進咖啡酸 (P(CA-LA)) 的聚合。P(CA-LA) 在 2D-MoS2 基體上的有效分佈是通過在超音波處理過程中,兒茶酚基與 MoS2 的相互作用來穩定的,隨後的聚合可能會同時剝離 MoS2 片材。透過在超音波化的過程中,兒茶酚基與MoS2 的交互作用可以使P(CA-LA) 在 2D-MoS2 基體上的有效分佈變得穩定,而隨後的聚合則會同時剝離 MoS2 片材。在循環伏安法中,P(CA-LA)-MoS2納米複合材料的顯示AMD的優異電化學氧化反應是一個不可逆的過程。採用差分脈衝伏安法 (DPV),以P(CA-LA)-MoS2 納米複合材料修飾的玻碳電極 (GCE) 展現了 AMD 的電化學反應。在優化的實驗條件下,對 AMD 進行電化學檢測,在 0.8 V 電位下觀察到的AMD陽極峰值電流呈線性相關。此外,經過設計的自己氧化還原聚合物基奈米複合傳感器表現出優異的選擇性和靈敏度,用於檢測 AMD,其線性範圍從 0 µM 至 433.3 µM,檢測下限為 3.6 nM。此外,聚合物和 MoS2 的協同相互作用及其自組特性提供了 0.54 μA μM-1 cm-2 的良好靈敏度。

    最後到了第五章,我們透過由β-環糊精(β-CD)的主客體吡咯單體包合物聚合成六角形板狀聚吡咯(PPY-IC),用以檢測神經傳導物質多巴胺Dopamine(DA)。通過β-CD和PPY之間的π-π相互作用和氫鍵等分子間相互作用,單體複合物的量在定義明確的六角形PPY-IC中扮演重要的角色。PPY-IC 的微觀結構和形態通過使用各種分析技術和對建議生長過程暫定機轉的進行了檢測,該機轉闡明了 PPY-IC 分層結構的形成。透過循環伏安法,我們使用被 PPY-IC 修飾的玻碳電極 (GCE)對 DA 進行電化學檢測。而經由PPY-IC 修飾的新型電極結構所產生的概念,具備用於電化學感測器和生物感測器的材料生產的潛力。


    Recently, active pharmaceutical ingredients (API) have arisen as a modern class of environmental pollutants with negative impacts on humans and ecosystems because their high exposure causes both chronic and acute harmful effects. Detection of API residues with high sensitivity, selectivity, and broad working range limits is more important in the API monitor. In this context, electrochemical-based assay is a low-cost alternative, easy usage, and sensitive method appearing to be the most largely feasible API detections. To achieve the excellent electrochemical detection of API residues, the nanomaterials-based electrode with surface modification is more important. Hence, this dissertation mainly focuses on the formation, characterization, and application of some novel biopolymers-based functionalization on the 2D-MoS2 hybrid materials as surface-modified materials for various API detection through the electrochemical applications, which is the main goal of this Ph.D. work. The content begins with a detailed introduction in the first chapter and description of the experimental section in the second chapter.
    Chapter 3 reports the electrode modification and material preparation for effective electrochemical detection of a cardio-selective β-blocker drug from the molybdenum disulfide (MoS2) surface functionalized with a catechol-containing polymer sodium alginate (SA) and dopamine (DA) through simultaneous MoS2 exfoliation and self-polymerization of DA. As-prepared MoS2/SA-PDA nanocomposite was characterized with spectroscopic, microscopic, and analytical techniques to evaluate its electrocatalytic performance. The electrocatalytic behavior of the MoS2/SA-PDA nanocomposite modified electrode for the detection of Acebutolol (ACE), a cardio-selective β-blocker drug was inspected through cyclic voltammetric and differential pulse voltammetric techniques. The influence of scan rate, concentration, and pH
    value on the oxidation peak current of ACE was performed to optimize the deducting condition. The electrochemical activity of the MoS2/SA-PDA nanocomposite electrode was attributed due to the existence of reactive functional groups that are contributed by SA, PDA, and MoS2 exhibiting a synergic effect. The MoS2/SA-PDA nanocomposite modified electrode exhibits admirable electrocatalytic activity with the wider linear response ranges (0.009 to 520 μM), low detection limit (5 nM), and better sensitivity (0.354 μA μM-1cm-2) although in the presence of similar interfering compounds.
    Chapter 4, described to investigates the eco-friendly, facile, green, and versatile approach used to prepare the self-organized redox polymers on the 2D nanosheets and used as a perspective electrode modification material for electrochemical determination of 1,4-dihydropyridine type of determination of anti-hypertensive drugs viz amlodipine (AMD). Naturally available caffeic acid was used as precursors and polymerized by a 1, 4-Michael addition reaction. Oxidants and amine functional groups of L-Arginine synergistically promote the polymerization of caffeic acid (P(CA-LA)). The effective dispersion of P(CA-LA) on the 2D-MoS2 matrix was stabilized via interaction with catechol groups interaction with MoS2 during the ultrasonication process, and subsequent polymerization may offer the simultaneous exfoliation of MoS2 sheets. Cyclic voltammetric performance of P(CA-LA)-MoS2 nanocomposite indicated that the excellent electrochemical oxidation of amlodipine is an irreversible process. The electrochemical response of AMD was explored at a glassy carbon electrode (GCE) modified with a P(CA-LA)-MoS2 nanocomposite by employing differential pulse voltammetry (DPV). Under the optimized experimental conditions, electrochemical detection of AMD has been performed with a linear correlation between the anodic peak current of amlodipine observed at a potential of 0.8 V. Additionally, the designed self-assembled redox
    polymer-based nanocomposite sensor exhibited superior selectivity and sensitivity for the detection of AMD with a linear range from (0 µM to 433.3 µM) and detection limit (3.6 nM). Moreover, synergic interactions of both polymers and MoS2 along with its self-assembly nature offer good sensitivity of 0.54 μA μM−1 cm−2.
    Chapter 5 attempts to develop hexagonal-shaped plate-like polypyrrole (PPY-IC) prepared through inclusion polymerization of the host-guest pyrrole monomeric inclusion complex of β-cyclodextrin (β-CD) to be used in the detection of the neurotransmitter dopamine (DA). The amount of the monomer complex plays a crucial role in the fabrication of well-defined hexagonal-shaped PPY-IC through intermolecular interactions such as π–π interactions and hydrogen bonding between the β-CD and PPY. The microstructure and morphology of the PPY-IC were examined by using various analytical techniques and a tentative mechanism for the growth process proposed which elucidates the formation of the hierarchical structure of the PPY-IC. Cyclo-voltammetry was performed with a PPY-IC modified glassy carbon electrode (GCE) for the electrochemical detection of DA. The concepts behind the novel architecture of the PPY-IC modified electrodes have the potentials for the production of materials applying in electrochemical sensing.

    DEDICATION II CHINESE ABSTRACT 中文摘要 III ABSTRACT VI ACKNOWLEDGMENTS IX TABLE OF CONTENT X LIST OF FIGURES XIV LIST OF TABLES XVIII LIST OF ACRONYMS XIX Chapter I 1. Introduction 1 1.1 Importance of active pharmaceutical ingredients (API) 1 1.2 Sources and pathways of pharmaceuticals in the environment 4 1.3 Selective APIs 4 1.4 Electrochemical technique for API residue detections………………………………………….……6 1.5 2D nanomaterials-based biosensor………….............................................................................. 9 1.6 Transition metal dichalcogenide-based MoS2 nanomaterials…………….. .………...10 1.7 Functionalization strategies of MoS2-based nanomaterials… …………………………….12 1.8 Ionic polysaccharide and cyclic polysaccharide as functional materials ……………………….. .………...13 1.8.1 Sodium alginate………………………………………………….....................................………..13 1.8.2. Cyclodextrin ………………………………14 1.8.3 Mussel adhesive proteins ………………………………15 1.9 Objective of the study 16 Chapter II 2. Experimental section …………………………….20 2.1. Materials… ……………………………..20 2.2. Methods ………………………………20 2.2.1 Synthesis of sodium alginate–dopamine (SA-DA) conjugates……………………………..…20 2.2.2 Preparation of MoS2/SA-PDA nanocomposite………………………………………………… 21 2.2.3 Synthesis of P(CA-LA)/MoS2 ……21 2.2.4 Synthetic procedure of self-assembled PPY-IC ……..22 2.3 Measurements ……..22 2.3.1 Instrumentations ……..22 2.3.2 Electrochemical characterization ………23 2.3.3 Fabrication of the MoS2/SA-PDA modified electrode ……….24 2.3.4 P(CA-LA)-MoS2 electrode fabrication ……….24 Chapter III Highly Exfoliated Functionalized MoS2 with Sodium Alginate-Polydopamine conjugates for Electrochemical Sensing of Cardio-selective β-Blocker by Voltammetric Methods 3.1 Introduction… ……….26 3.2 Results and Discussion ……….28 3.2.1 Fabrication of MoS2/SA-PDA nanocomposite… ……….28 3.2.2 Electrochemical behavior of MoS2/SA-PDA nanocomposite modified electrode… ………..33 3.2.3 Effect of scan rate, concentration, and pH value on electro-oxidation of ACE… … ……..38 3.2.4 Sensitivity and Selectivity of MoS2/SA-PDA nanocomposite modified electrode towards ACE detection… 39 3.2.5 Practical feasibility of MoS2/SA-PDA nanocomposite modified electrode………… .42 3.2.6 Real sample analysis of blood and urine samples ..… ….42 3.3 Conclusions ……..44 Chapter IV Self-organized polycaffeic acid/MoS2 nanocomposites with excellent electrocatalytic materials towards the determination of anti-hypertensive drug contaminations. 4.1 Introduction ………………………………………………………………………………...…..45 4.2 Result and discussion… 47 4.2.1 The structural formation of P(CA-LA)-MoS2 nanocomposite ..47 4.2.2 Electrochemical performance of P(CA-LA)-MoS2 nanocomposite modified electrode …..54 4.2.3 Differential pulse voltammetry (DPV) approach for AMD detection… …61 4.2.4 Real sample detection performance… …64 4.3 Conclusion ….66 Chapter V Facile synthesis of hexagonal-shaped polypyrrole self-assembled particles for the electrochemical detection of dopamine 5.1 Introduction………………………… …………………………………………………………………...67 5.2 Results and discussion 69 5.2.1 Morphology evaluation… ..69 5.2.2 Formation mechanism of hexagonal-shape particles… ..71 5.2.3 Fabrication of hexagonal plate-like PPY-IC… …………………….73 5.2.4 Voltammetric detection of dopamine …………………….77 5.2.5 Interference, reproducibility, and stability studies… ……………………..81 5.2.6 Electron transport behavior… …………………….83 5.3 Conclusion …………………….84 Chapter VI Summary and future works …...….…….…... 86 Chapter VII Reference……………………………………………………………………………………….…88 LIST OF FIGURES

    [1] A.L. Batt, S. Kim, D. Aga, Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere 68(3) (2007) 428-435.
    [2] S.-C. Kim, K. Carlson, Occurrence of ionophore antibiotics in water and sediments of a mixed-landscape watershed. WaterRes.40(13)(2006)2549-2560.
    [3] C.S. McArdell, E. Molnar, M.J.-F. Suter, W. Giger, technology, Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland. Environ. Sci. 37(24) (2003) 5479-5486.
    [4] A. Smith, J. Balaam, A. Ward, The development of a rapid screening technique to measure antibiotic activity in effluents and surface water samples. Mar. Pollut. Bull. 54(12) (2007) 1940-1946.
    [5] A. Watkinson, E. Murby, D.W. Kolpin, S. Costanzo, The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci. Total Environ. 2009, 407, 2711– 2723,
    [6] K. Lees, M. Fitzsimons, J. Snape, A. Tappin, S. Comber, Pharmaceuticals in soils of lower income countries: physico-chemical fate and risks from wastewater irrigation. Environ. Int. 2016, 94, 712– 723,
    [7] S. González-Alonso, L.M. Merino, S. Esteban, M.L. de Alda, D. Barceló, J.J. Durán, J. López-Martínez, J. Aceña, S. Pérez, N. Mastroianni, Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region, Environ. Pollut. 229 (2017) 241-254.
    [8] T. aus der Beek, F.A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, A. Küster, chemistry, Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem.35(4) (2016) 823-835.
    [9] C. Daughton, Non-regulated water contaminants: emerging research. Environ. Impact Assess. Rev. 24(7-8) (2004) 711-732.
    [10] F. Scharpf, K.-D. Riedel, H. Laufen, M. Leitold, Enantioselective gas chromatographic assay with electron-capture detection for amlodipine in biological samples, Journal of Chromatography B: Biomedical Sciences and Applications 655(2) (1994) 225-233.
    [11] S.A. Hassan, N. Ibrahim, E.S. Elzanfaly, A.E. El Gendy, Simultaneous Determination of Amlodipine and Olmesartan Using HPLC with Fluorescence Detection, Pharmaceutical Chemistry Journal 55(2) (2021) 206-212.
    [12] A.A. Silva, L.A. Silva, R.A. Munoz, A.C. Oliveira, E.M. Richter, Determination of Amlodipine and Atenolol by Batch Injection Analysis with Amperometric Detection on Boron‐doped Diamond Electrode, Electroanalysis 28(7) (2016) 1455-1461.
    [13] K. Matalka, T. El‐Thaher, M. Saleem, T. Arafat, A. Jehanli, A. Badwan, Enzyme linked immunosorbent assay for determination of amlodipine in plasma, Journal of Clinical Laboratory Analysis 15(1) (2001) 47-53.
    [14] A.O. Alnajjar, Validation of a capillary electrophoresis method for the simultaneous determination of amlodipine besylate and valsartan in pharmaceuticals and human plasma, Journal of AOAC International 94(2) (2011) 498-502.
    [15] P.R. Patil, S.U. Rakesh, P.N. Dhabale, K.B. Burade, Simultaneous estimation of ramipril and amlodipine by UV spectrophotometric method, Research Journal of Pharmacy and Technology 2(2) (2009) 304-307.
    [16] Y.-C.Lin,.W.-P. Lai, H.-h. Tung, A.Y.-C. Lin, Assessment, Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan, Environ. Monit. Assess. 187(5) (2015) 1-19.
    [17] P. Klimaszyk, P. Rzymski, Water and aquatic fauna on drugs: what are the impacts of pharmaceutical pollution?, Water Science and Technology Library,2017, pp. 255-278.
    [18] M. Sabidó, H. Thilo, G. Guido, Long-term effectiveness of bisoprolol in patients with angina: a real-world evidence study, Pharmacol. Res. 139 (2019) 106-112.
    [19] M. Arvand, M. Kaykhaii, P. Ashrafi, S. Hemmati, An electrochemical interface for direct analysis of amlodipine in tablets and human blood samples, Materials Science and Engineering: B 263 (2021) 114868.
    [20] W. Schultz, Dopamine neurons and their role in reward mechanisms, Curr. Opin. Neurobiol.
    7 (1997) 191−197.
    [21] J.N. Tiwari, V. Vij, K.C. Kemp, K.S Kim, Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules, ACS Nano 10(1) (2016) 46-80.
    [22] A. Azzouz, K.Y. Goud, N. Raza, E. Ballesteros, S.-E. Lee, J. Hong, A. Deep, K.-H Kim, Nanomaterial-based electrochemical sensors for the detection of neurochemicals in biological matrices, Trends Anal. Chem., 110 (2019) 15-34.
    [23] M. Li, H. Gou, I. Al-Ogaidi, N. Wu, Nanostructured sensors for detection of heavy metals: a review, ACS Publications, Chem. Eng., 1 (2013), pp. 713-723,
    [24] B. Wang, U. Akiba, J. Anzai, Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: A review, Molecules 22(7) (2017) 1048.
    [25] N. Rohaizad, C.C. Mayorga-Martinez, M. Fojtů, N.M. Latiff, M. Pumera, Two-dimensional materials in biomedical, biosensing and sensing applications, Chem. Soc. Rev.,50(1) (2021) 619-657.
    [26] N. Wongkaew, M. Simsek, C. Griesche, A.J Baeumner, Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective, Chem. Rev.,119(1) (2018) 120-194.
    [27] C. Zhu, G. Yang, H. Li, D. Du, Y. Lin, Electrochemical sensors and biosensors based on nanomaterials and nanostructures, Anal. Chem., 87(1) (2015) 230-249.
    [28] L. Xiang, C. Zhao, J.J. Wang, Nanomaterials-based electrochemical sensors and biosensors for pesticide detection, Sensor Letters, 9(3) (2011) 1184-1189.
    [29] T.M. Mohona, A. Gupta, A. Masud, S.-C. Chien, L.-C. Lin, P.C. Nalam, N. Aich, technology, Aggregation behavior of inorganic 2D nanomaterials beyond graphene: insights from molecular modeling and modified DLVO theory, Environ. Sci. Technol., 53(8) (2019) 4161-4172.
    [30] C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. Nam, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev., 117(9) (2017) 6225-6331.
    [31] R. Khan, A. Radoi, S. Rashid, A. Hayat, A. Vasilescu, S.J.S. Andreescu, Two-dimensional nanostructures for electrochemical biosensor, Sensors 21(10) (2021) 3369.
    [32] H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari, L. Wang, H.J. Choi, T.D. Chung, N. Lu, T. Hyeon, A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy, Nat. Nanotechnol. 11(6) (2016) 566-572.
    [33] M. Inagaki, F.Kang, Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne, J. Mater. Chem. A. 2(33) (2014) 13193-13206.
    [34] X.D. Zhang, J. Chen, Y. Min, G.B. Park, X. Shen, S.S. Song, Y.M. Sun, H. Wang, W. Long, J.J.A.F.M. Xie, Metabolizable Bi2Se3 nanoplates: biodistribution, toxicity, and uses for cancer radiation therapy and imaging, Adv. Funct. Mater.24(12) (2014) 1718-1729.
    [35] V. Agarwal, K. Chatterjee, Recent advances in the field of transition metal dichalcogenides for biomedical applications, Nanoscale. 10(35) (2018) 16365-16397.
    [36] M. Soleymaniha, M.A. Shahbazi, A.R. Rafieerad, A. Maleki, A. Amiri, Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations, Advanced Healthcare Materials.8(1) (2019) 1801137.
    [37] D. Gupta, V. Chauhan, R. Kumar, A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments, Inorganic Chemistry Communications, 121 (2020) 108200.
    [38] V.P. Pham, G. Yeom, Recent advances in doping of molybdenum disulfide: industrial applications and future prospects, Advanced Materials, 28(41) (2016) 9024-9059.
    [39] Z. Xu, J. Lu, X. Zheng, B. Chen, Y. Luo, M.N. Tahir, B. Huang, X. Xia, X. Pan, A critical review on the applications and potential risks of emerging MoS2 nanomaterials, Journal of hazardous materials, 399 (2020) 123057.
    [40] S.V. Selvi, A. Prasannan, S.-M. Chen, A. Vadivelmurugan, H.-C. Tsai, J. Lai, Glutathione and cystamine functionalized MoS2core-shell nanoparticles for enhanced electrochemical detection of doxorubicin, Microchimica Acta. 188(2) (2021) 1-12.
    [41] S. Karunakaran, S. Pandit, B. Basu, M. De, Simultaneous exfoliation and functionalization of 2H-MoS2 by thiolated surfactants: applications in enhanced antibacterial activity, J. Am. Chem. Soc. 140(39) (2018) 12634-12644.
    [42] Q. Huang, M. Liu, J. Chen, Q. Wan, J. Tian, L. Huang, R. Jiang, Y. Wen, X. Zhang, Y. Wei, Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes, Applied Surface Science, 419 (2017) 35-44.
    [43] Q. Jia, X. Huang, G. Wang, J. Diao, P. Jiang, MoS2 nanosheet superstructures based polymer composites for high-dielectric and electrical energy storage applications, The Journal of Physical Chemistry C, 120(19) (2016) 10206-10214.
    [44] Z. Zhang, J. Du, J. Li, X. Huang, T. Kang, C. Zhang, S. Wang, O.O. Ajao, W.-J. Wang, P. Liu, Polymer nanocomposites with aligned two-dimensional materials, Progress in Polymer Science, 114 (2021) 101360.
    [45] D. Ponnamma, K.K. Sadasivuni, M. AlMaadeed, Introduction of biopolymer composites: what to do in electronics?, Biopolymer Composites in Electronics, Elsevier2017, pp. 1-12.
    [46] M.I. Neves, L. Moroni, C Barrias, biotechnology, Modulating alginate hydrogels for improved biological performance as cellular 3D microenvironments, Frontiers in bioengineering and biotechnology, 8 (2020) 665.
    [47] J.-u. Lee, S.-S. Lee, S. Lee, H. Oh, Noncovalent complexes of cyclodextrin with small organic molecules: Applications and insights into host–guest Interactions in the gas phase and condensed phase, Molecules 25(18) (2020) 4048.
    [48] H.N. Cheng, K. Kilgore, C. Ford, J. Smith, M.K. Dowd, Z. He, Technology, Adhesive performance of cottonseed protein modified by catechol-containing compounds, Journal of Adhesion Science and Technology, (2021) 1-13.
    [49] J.L. Dalsin, B.-H. Hu, B.P. Lee, P. Messersmith, Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces, Journal of the American Chemical Society,125(14) (2003) 4253-4258.
    [50] A.C. Vale, P.R. Pereira, N. Alves, F. Polymers, Polymeric biomaterials inspired by marine mussel adhesive proteins, Reactive and Functional Polymers, 159 (2021) 104802.
    [51] H. Wang, F. Gao, R. Ren, Z. Wang, R. Yue, J. Wei, X. Wang, Z. Kong, H. Zhang, X. Zhang, Caffeic acid polymer rapidly modified sponge with excellent anti-oil-adhesion property and efficient separation of oil-in-water emulsions, Journal of Hazardous Materials,404 (2021) 124197.
    [52] N.B. Li, W. Ren, H.Luo, Simultaneous voltammetric measurement of ascorbic acid and dopamine on poly (caffeic acid)-modified glassy carbon electrode, Journal of Solid State Electrochemistry 112(6) (2008) 693-699.
    [53] T. Li, J. Xu, L. Zhao, S. Shen, M. Yuan, W. Liu, Q. Tu, R. Yu, J. Wang, Au nanoparticles/poly (caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen, Talanta 159 (2016) 356-364.
    [54] T.-W. Chen, J.V. Kumar, S.-M. Chen, B. Mutharani, R. Karthik, E. Nagarajan, V. Muthuraj, Rational construction of novel rose petals-like yttrium molybdate nanosheets: a Janus catalyst for the detection and degradation of cardioselective β-blocker agent acebutolol, Chemical Engineering Journal, 359 (2019) 1472-1485.
    [55] N. Karikalan, M. Elavarasan, T. Yang, Effect of cavitation erosion in the sonochemical exfoliation of activated graphite for electrocatalysis of acebutolol, Ultrasonics sonochemistry,56 (2019) 297-304.
    [56] A. Yamuna, P. Sundaresan, S.-M. Chen, W.-L. Shih, Ultrasound assisted synthesis of praseodymium tungstate nanoparticles for the electrochemical detection of cardioselective β-blocker drug, Microchemical Journal, 159 (2020) 105420.
    [57] U. Bussy, I. Tea, V. Ferchaud-Roucher, M. Krempf, V. Silvestre, N. Galland, D. Jacquemin, M. Andresen-Bergström, U. Jurva, M. Boujtita, Voltammetry coupled to mass spectrometry in the presence of isotope 18O labeled water for the prediction of oxidative transformation pathways of activated aromatic ethers: Acebutolol Anal. Chim. Acta, 762 (2013) 39-46.
    [58] A. Levent, Voltammetric behavior of acebutolol on pencil graphite electrode: highly sensitive determination in real samples by square-wave anodic stripping voltammetry, Journal of the Iranian Chemical Society, 14(12) (2017) 2495-2502.
    [59] M. Silva, S. Morante-Zarcero, D. Pérez-Quintanilla, I. Sierra, A.B. Chemical, Simultaneous determination of pindolol, acebutolol and metoprolol in waters by differential-pulse voltammetry using an efficient sensor based on carbon paste electrode modified with amino-functionalized mesostructured silica, Sensors and Actuators B: Chemical,283 (2019) 434-442.
    [60] S.M. Naqvi, J. Gansau, C. Buckley, Priming and cryopreservation of microencapsulated marrow stromal cells as a strategy for intervertebral disc regeneration, Biomed. Mater. 13(3) (2018) 034106.
    [61] T. Coviello, P. Matricardi, C. Marianecci, F. Alhaique, Polysaccharide hydrogels for modified release formulations, J. Control. Release 119(1) (2007) 5-24.
    [62] C.H. Yang, M.X. Wang, H. Haider, J.H. Yang, J.-Y. Sun, Y.M. Chen, J. Zhou, Z. Suo, interfaces, strengthening alginate/polyacrylamide hydrogels using various multivalent cations, ACS Appl. Mater. Interf.5(21) (2013) 10418-10422.
    [63] C. Lee, J. Shin, J. Lee, E. Byun, J. Ryu, S.H. Um, D Kim, H. Lee, S. Cho, Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility, Biomacromolecules. 14(6) (2013) 2004-2013.
    [64] A.M. Bagoji, S. Nandibewoor, Electrocatalytic redox behavior of graphene films towards acebutolol hydrochloride determination in real samples, New J. Chem. 40(4) (2016) 3763-3772.
    [65] A. Yamuna, P. Sundaresan, S. Chen, S. Sayed, T. Chen, S.-P. Rwei, X. Liu, Electrochemical determination of acebutolol on the electrochemically pretreated screen printed carbon electrode, Int. J. Electrochem. Sci., 14(7) (2019) 6168-6178.
    [66] A. Yamuna, P. Sundaresan, S. Chen, Ethylcellulose assisted exfoliation of graphite by the ultrasound emulsification: an application in electrochemical acebutolol sensor, Ultrasonics- Sonochemistry, 59 (2019) 104720.
    [67] A.M. Bagoji, S.M. Patil, S Nandibewoor, Electroanalysis of cardioselective beta-adrenoreceptor blocking agent acebutolol by disposable graphite pencil electrodes with detailed redox mechanism, Cogent. Chem. 2(1) (2016) 1172393.
    [68] B.-S. Lou, U. Rajaji, S.-M. Chen, T.-W. Chen, A simple sonochemical assisted synthesis of NiMoO4/chitosan nanocomposite for electrochemical sensing of amlodipine in pharmaceutical and serum samples, Ultrasonics Sonochemistry 64 (2020) 104827.
    [69] M. Firouzi, M. Giahi, M. Najafi, S. Homami, S. Mousavi, Electrochemical determination of amlodipine using a CuO-NiO nanocomposite/ionic liquid modified carbon paste electrode as an electrochemical sensor, Journal of Nanoparticle Research 23(4) (2021) 1-12.
    [70] P. Lee, K. Ward, K. Tschulik, G. Chapman, R. Compton, Electrochemical detection of glutathione using a poly (caffeic acid) nanocarbon composite modified electrode, Electroanalysis 26(2) (2014) 366-373.
    [71] M. Catauro, F. Barrino, G. Dal Poggetto, G. Crescente, S. Piccolella, S. Pacifico, New SiO2/caffeic acid hybrid materials: Synthesis, spectroscopic characterization, and bioactivity, Materials 13(2) (2020) 394.
    [72] I. Aguilar-Hernández, N.K. Afseth, T. López-Luke, F.F. Contreras-Torres, J.P. Wold, N. Ornelas-Soto, Surface enhanced Raman spectroscopy of phenolic antioxidants: A systematic evaluation of ferulic acid, p-coumaric acid, caffeic acid and sinapic acid, Vibrational Spectroscopy 89 (2017) 113-122.
    [73] C.-Y. Lee, A. Prasannan, V. Lincy, S. Vetri Selvi, S. Chen, P.-D. Hong, Highly exfoliated functionalized MoS2 with sodium alginate-polydopamine conjugates for electrochemical sensing of cardio-selective β-blocker by voltammetric methods, Microchimica Acta 188(3) (2021) 1-12.
    [74] W.B. Machini, D.N. David-Parra, M. Teixeira, Electrochemical investigation of the voltammetric determination of hydrochlorothiazide using a nickel hydroxide modified nickel electrode, Materials Science and Engineering: 57 (2015) 344-348.
    [75] G. Altiokka, D. Dogrukol‐Ak, M. Tunçel, H Aboul‐Enein, M. Chemistry, Determination of amlodipine in pharmaceutical formulations by differential‐pulse voltammetry with a glassy carbon electrode, Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry 335(2‐3) (2002) 104-108.
    [76] A.R.M. Sikkander, C. Vedhi, P. Manisankar, Electrochemical determination of calcium channel blocker drugs using multiwall carbon nanotube-modified glassy carbon electrode, International Journal of Industrial Chemistry 3(1) (2012) 1-8.
    [77] A. Mohammadi, A.B. Moghaddam, K. Eilkhanizadeh, E. Alikhani, S. Mozaffari, T. Yavari, N. Letters, Electro‐oxidation and simultaneous determination of amlodipine and atorvastatin in commercial tablets using carbon nanotube modified electrode, Micro & Nano Letters 8(8) (2013) 413-417.
    [78] Z. Stoiljković, M. Avramov Ivić, S.D. Petrović, D. Mijin, S. Stevanović, U. Lačnjevac, A. Marinković, Voltammetric and square-wave anodic stripping determination of amlodipine besylate on gold electrode, International Journal of electrochemical science 7(3) (2012) 2288-2303.
    [79] K. Jackowska, P.J.A. Krysinski, b. chemistry, New trends in the electrochemical sensing of dopamine, Anal. Bioanal. Chem. 405(11) (2013) 3753-3771.
    [80] X. Liu, Y. Peng, X. Qu, S. Ai, R. Han, X. Zhu, Multi-walled carbon nanotube-chitosan/poly (amidoamine)/DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid, Journal of Electroanalytical Chemistry. 654(1-2) (2011) 72-78.
    [81] L. Zhang, X.J.A. Lin, b. chemistry, Electrochemical behavior of a covalently modified glassy carbon electrode with aspartic acid and its use for voltammetric differentiation of dopamine and ascorbic acid, Analytical and Bioanalytical Chemistry,382(7) (2005) 1669-1677.
    [82] M. Ates, E. review study of (bio) sensor systems based on conducting polymers, Materials Science and Engineering C.33(4) (2013) 1853-1859.
    [83] D. Ateh, H. Navsaria, P. Vadgama, Polypyrrole-based conducting polymers and interactions with biological tissues, interactions with biological tissues, J R Soc Interface.3(11) (2006) 741-752.
    [84] Y.-Z. Long, M. Gu, M. Wan, J.-L. Duvail, Z. Liu, Z. Fan, Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers, Progress in Polymer Science 36(10) (2011) 1415-1442.
    [85] A. Prasannan, T.L.B. Truong, P.-D. Hong, N. Somanathan, I. Shown, T.J.L. Imae, Synthesis and characterization of “hairy urchin”-like polyaniline by using β-cyclodextrin as a template, Langmuir, 27(2) (2011) 766-773.
    [86] B.-T. Truong-Le, A. Prasannan, P.-D. Hong, W.-T. Chuang, N. Somanathan, P. Science, Facile synthesis of the structural hierarchy in chrysanthemum–snowball-like self-organized polyaniline, Colloid and Polymer Science 291(3) (2013) 563-571.
    [87] L. Pan, L. Pu, Y. Shi, S. Song, Z. Xu, R. Zhang, Y. Zheng, Synthesis of polyaniline nanotubes with a reactive template of manganese oxide, Adv.Mater. 19(3) (2007) 461-464.
    [88] J.W. Chung, T.J. Kang, S.-Y Kwak, Supramolecular self-assembly of architecturally variant α-cyclodextrin inclusion complexes as building blocks of hexagonally aligned microfibrils, Macromolecules.40(12) (2007) 4225-4234.
    [89] Y. Huang, Y.-E. Miao, S. Ji, W.W. Tjiu, T.J. Liu, interfaces, Electrospun carbon nanofibers decorated with Ag–Pt bimetallic nanoparticles for selective detection of dopamine, ACS Appl Mater Interfaces,6(15) (2014) 12449-12456.
    [90] P. Ekabutr, P. Sangsanoh, P. Rattanarat, C.W. Monroe, O. Chailapakul, P. Supaphol, Development of a disposable electrode modified with carbonized, graphene‐loaded nanofiber for the detection of dopamine in human serum, J. Appl. Polym. Sci.131(19) (2014).
    [91] Y. Tong, Z. Li, X. Lu, L. Yang, W. Sun, G. Nie, Z. Wang, C. Wang, Electrochemical determination of dopamine based on electrospun CeO2/Au composite nanofibers, Electrochim. Acta 95 (2013) 12-17.
    [92] L.A. Mercante, A. Pavinatto, L.E. Iwaki, V.P. Scagion, V. Zucolotto, O.N. Oliveira Jr, L.H. Mattoso, D. Correa, interfaces, Electrospun polyamide 6/poly (allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine, ACS Appl. Mater. Interfaces 7(8) (2015) 4784-4790.
    [93] J. Jiang, X. Du, Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@ Pd-reduced graphene oxide nanocomposites, Nanoscale 6(19) (2014) 11303-11309.
    [94] S. Palanisamy, S. Ku, S.-M Chen, Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite, Microchim Acta 180(11) (2013) 1037-1042.
    [95] A.-J. Wang, J.-J. Feng, Y.-F. Li, J.-L. Xi, W.-J. Dong, In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine, Microchim Acta 171(3) (2010) 431-436.
    [96] M. Wei, L.G. Sun, Z.Y. Xie, J.F. Zhii, A. Fujishima, Y. Einaga, D.G. Fu, X.M. Wang, Z.Z Gu, Selective determination of dopamine on a boron‐doped diamond electrode modified with gold nanoparticle/polyelectrolyte‐coated polystyrene colloids, Adv. Funct. Mater. 18(9) (2008) 1414-1421.

    無法下載圖示

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE