簡易檢索 / 詳目顯示

研究生: 李昭緯
Jhao-Wei Li
論文名稱: 可調節溼潤性之pH響應性纖維素膜於油水分離之研究
The pH Responsive Cellulose Membrane with Switchable Wettability for Oil-Water Separation
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 鄭國彬
GUO-BIN ZHENG
許耀基
YAO-JI SYU
邱昱誠
Yu-Cheng Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 63
中文關鍵詞: pH值響應油水分離聚多巴胺塗層
外文關鍵詞: pH-responsive, oil-water separation, polydopamine coating
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工廠和家庭排放的有機或油污染物一直以來都對環境和人類健康造成威脅,因此開發油水分離材料的需求日以俱增。在最近的研究中,為了處理更複雜的油水混合物(例如:不同密度的油),擁有智能感應的材料引起了極大的關注。在這篇論文中,我們開發了一種在纖維素膜的表面改質方法,並使其具備pH響應的功能。首先,受生物啟發的分子多巴胺(Dopamine)利用NaIO4氧化劑使纖維素膜表面均勻地覆蓋一層聚多巴胺 (PDA)。聚多巴胺(PDA)塗層不僅可以提供保護作用以防止酸破壞纖維素膜,且還可以引入反應端進行更進一步的改質(Michael addition and Schiff base reaction)。隨後,分別選擇二甲基胺基丙胺(DMAPA)和十八烷基胺(ODA)作為pH材料感應和疏水材料。兩種材料在溫和條件下同時導入,且為了避免使用有毒的有機溶劑,在整個過程中只使用了水和乙醇。改質後的纖維素膜在中性條件下為疏水性,而在酸(pH 2)中則轉變為親水性。換句話說,根據水的pH值,它可以是“除油”型和“除水”型分離材料。在油水分離的模擬實驗中,其分離效率可能達到99%。並展示了改質後的纖維素膜可以吸收水中的油,而再浸入酸(pH2)的之後便能使油脫附。這大大提升了其可重複利用性。我們相信這環境友好且簡易的製程方法可為創造智能感應材料提供了新的想法與途徑。


    The organic or oil pollutant discharge from factory and household pose threat to environment and livings health. The demand for oil-water separation materials increase with days. Recently, the stimulus-responsive materials get great attention in order to handle more complicated situation (ex: different density of oils). In this work, we demonstrated a facile modification method on cellulose membrane and create a pH responsive surface. First, a bio-inspired molecule, dopamine, were oxidized by NaIO4 and uniformly coated on the membrane surface. The polydopamine (PDA) coating not only provide the protection to prevent acid harming cellulose membrane but also introduced the reactive sites for further modification (Michael addition & Schiff base reaction). Subsequently, dimethylaminopropylamine (DMAPA) and octadecylamine (ODA) were selected as pH responsive and hydrophobic materials, respectively. Both materials were introduced simultaneously under mild condition. To avoid using toxic organic solvent, water and ethanol were only used in the whole process. The modified cellulose membrane surface shows hydrophobic under neutral condition, while transforming into hydrophilic in acid (pH 2). That is, it could be both “oil-removing” and “water-removing” types separation material according to the pH of water. Also, the separation efficiency could reach 99%. We also demonstrate the modified cellulose membrane could absorb the oil in water and desorb the oil while immersing in acid (pH2). It gives the membrane surface has the “self-cleaning” ability. This environment-friendly and facile method provide a new way to create stimulus-responsive materials.

    摘要 I Abstract III Table of Contents V List of Table VII List of Figures VIII Chapter 1: Introduction 10 1.1 Research Background 10 1.2 Literature Review for Oil-Water Separation 14 1.2.1 Substrates and Modification Methods 14 1.2.2 Polydopamine Coating 16 1.2.3 Responsive Materials 19 1.2.4 pH-Responsive Materials 21 1.3 Motivation and Objective 26 Chapter 2: Materials and Methods 28 2.1 Materials 28 2.2 Experimental Flow Chart 28 2.3 Sample and Buffer Solution Preparation 29 2.3.1 Polydopamine Coating on Cellulose Membrane 29 2.3.2 Hydrophobic Modification on Polydopamine Coated Cellulose Membrane 30 2.3.3 pH Responsive Modification on Polydopamine Coated Cellulose Membrane 31 2.4 Instruments and Characterizations 32 Chapter 3: Results and Discussion 33 3.1 The Appearance and Morphology of Sample Surface 33 3.2 Surface Characterizations of FTIR and XPS 36 3.3 Wettability and pH Responsive 38 3.4 Demonstration of Oil-Water Separation 45 Chapter 4: Conclusion 49 Chapter 5: Reference 50

    1. Young, T., III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 1805. 95: p. 65-87.DOI: 10.1098/rstl.1805.0005.
    2. Wenzel, R.N., RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994.DOI: 10.1021/ie50320a024.
    3. Wenzel, R.N., Surface Roughness and Contact Angle. The Journal of Physical and Colloid Chemistry, 1949. 53(9): p. 1466-1467.DOI: 10.1021/j150474a015.
    4. Cassie, A.B.D., Contact angles. Discussions of the Faraday Society, 1948. 3.DOI: 10.1039/df9480300011.
    5. Cassie, A.B.D. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40.DOI: 10.1039/tf9444000546.
    6. Pourziad, S., M.R. Omidkhah, and M. Abdollahi, Improved antifouling and self-cleaning ability of PVDF ultrafiltration membrane grafted with polymer brushes for oily water treatment. Journal of Industrial and Engineering Chemistry, 2020. 83: p. 401-408.DOI: 10.1016/j.jiec.2019.12.013.
    7. Liu, S., et al., Fabrication of acrylamide decorated superhydrophilic and underwater superoleophobic poly(vinylidene fluoride) membranes for oil/water emulsion separation. Journal of the Taiwan Institute of Chemical Engineers, 2019. 95: p. 300-307.DOI: 10.1016/j.jtice.2018.07.015.
    8. Cui, J., et al., Development of composite membranes with irregular rod-like structure via atom transfer radical polymerization for efficient oil-water emulsion separation. J Colloid Interface Sci, 2019. 533: p. 278-286.DOI: 10.1016/j.jcis.2018.08.055.
    9. Ju, J., T. Wang, and Q. Wang, Superhydrophilic and underwater superoleophobic PVDF membranes via plasma-induced surface PEGDA for effective separation of oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015. 481: p. 151-157.DOI: 10.1016/j.colsurfa.2015.01.041.
    10. Li, L., et al., Embedded polyzwitterionic brush-modified nanofibrous membrane through subsurface-initiated polymerization for highly efficient and durable oil/water separation. J Colloid Interface Sci, 2020. 575: p. 388-398.DOI: 10.1016/j.jcis.2020.04.117.
    11. Zhang, T., et al., Electrospun composite membrane with superhydrophobic-superoleophilic for efficient water-in-oil emulsion separation and oil adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020. 602.DOI: 10.1016/j.colsurfa.2020.125158.
    12. Shen, X., et al., Surface PEGylation of polyacrylonitrile membrane via thiol-ene click chemistry for efficient separation of oil-in-water emulsions. Separation and Purification Technology, 2021. 255.DOI: 10.1016/j.seppur.2020.117418.
    13. Zhu, L., et al., Fabrication of mullite ceramic-supported carbon nanotube composite membranes with enhanced performance in direct separation of high-temperature emulsified oil droplets. Journal of Membrane Science, 2019. 582: p. 140-150.DOI: 10.1016/j.memsci.2019.04.001.
    14. Zareei Pour, F., H. Karimi, and V. Madadi Avargani, Preparation of a superhydrophobic and superoleophilic polyester textile by chemical vapor deposition of dichlorodimethylsilane for Water–Oil separation. Polyhedron, 2019. 159: p. 54-63.DOI: 10.1016/j.poly.2018.11.040.
    15. Chen, L. and Z. Guo, A facile method to mussel-inspired superhydrophobic thiol-textiles@polydopamine for oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 554: p. 253-260.DOI: 10.1016/j.colsurfa.2018.06.059.
    16. Qing, W., et al., In situ silica growth for superhydrophilic-underwater superoleophobic Silica/PVA nanofibrous membrane for gravity-driven oil-in-water emulsion separation. Journal of Membrane Science, 2020. 612.DOI: 10.1016/j.memsci.2020.118476.
    17. Yi, Y., et al., Acrylic acid-grafted pre-plasma nanofibers for efficient removal of oil pollution from aquatic environment. J Hazard Mater, 2019. 371: p. 165-174.DOI: 10.1016/j.jhazmat.2019.02.085.
    18. Mousa, H.M., et al., Polysulfone-iron acetate/polyamide nanocomposite membrane for oil-water separation. Environmental Nanotechnology, Monitoring & Management, 2020. 14.DOI: 10.1016/j.enmm.2020.100314.
    19. Doan, H.N., et al., Recycled PET as a PDMS-Functionalized electrospun fibrous membrane for oil-water separation. Journal of Environmental Chemical Engineering, 2020. 8(4).DOI: 10.1016/j.jece.2020.103921.
    20. Anupriyanka, T., et al., A single step approach of fabricating superhydrophobic PET fabric by using low pressure plasma for oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020. 600.DOI: 10.1016/j.colsurfa.2020.124949.
    21. Cheng, J., et al., Study on a novel PTFE membrane with regular geometric pore structures fabricated by near-field electrospinning, and its applications. Journal of Membrane Science, 2020. 603.DOI: 10.1016/j.memsci.2020.118014.
    22. Wang, J., S. Liu, and S. Guo, Calcium ions enhanced mussel-inspired underwater superoleophobic coating with superior mechanical stability and hot water repellence for efficient oil/water separation. Applied Surface Science, 2020. 503.DOI: 10.1016/j.apsusc.2019.144180.
    23. Song, P. and Q. Lu, Porous clusters of metal-organic framework coated stainless steel mesh for highly efficient oil/water separation. Separation and Purification Technology, 2020. 238.DOI: 10.1016/j.seppur.2019.116454.
    24. Yin, Y., et al., A durable mesh decorated with polydopamine/graphene oxide for highly efficient oil/water mixture separation. Applied Surface Science, 2019. 479: p. 351-359.DOI: 10.1016/j.apsusc.2019.01.118.
    25. Chen, X., et al., Surface chemistry-dominated underwater superoleophobic mesh with mussel-inspired zwitterionic coatings for oil/water separation and self-cleaning. Applied Surface Science, 2019. 483: p. 399-408.DOI: 10.1016/j.apsusc.2019.03.318.
    26. Li, J.-J., Y.-N. Zhou, and Z.-H. Luo, Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation. Chemical Engineering Journal, 2017. 322: p. 693-701.DOI: 10.1016/j.cej.2017.04.074.
    27. Ma, L., et al., Intelligent composite foam with reversible tunable superwettability for efficient and sustainable oil/water separation and high-concentration organic wastewater purification. Process Safety and Environmental Protection, 2021. 149: p. 144-157.DOI: 10.1016/j.psep.2020.10.043.
    28. Zhou, W., et al., A facile method for the fabrication of a superhydrophobic polydopamine-coated copper foam for oil/water separation. Applied Surface Science, 2017. 413: p. 140-148.DOI: 10.1016/j.apsusc.2017.04.004.
    29. Liu, W., et al., PDA-PEI copolymerized highly hydrophobic sponge for oil-in-water emulsion separation via oil adsorption and water filtration. Surface and Coatings Technology, 2021. 406.DOI: 10.1016/j.surfcoat.2020.126743.
    30. Dong, X., et al., Polydopamine-Assisted Surface Coating of MIL-53 and Dodecanethiol on a Melamine Sponge for Oil-Water Separation. Langmuir, 2020. 36(5): p. 1212-1220.DOI: 10.1021/acs.langmuir.9b02987.
    31. Ong, C., et al., Polydopamine as a Versatile Adhesive Layer for Robust Fabrication of Smart Surface with Switchable Wettability for Effective Oil/Water Separation. Industrial & Engineering Chemistry Research, 2019. 58(12): p. 4838-4843.DOI: 10.1021/acs.iecr.8b06408.
    32. Wang, J., H. Wang, and G. Geng, Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route. Mar Pollut Bull, 2018. 127: p. 108-116.DOI: 10.1016/j.marpolbul.2017.11.060.
    33. Xu, X., et al., Fabricated smart sponge with switchable wettability and photocatalytic response for controllable oil-water separation and pollutants removal. Journal of Industrial and Engineering Chemistry, 2020. 92: p. 278-286.DOI: 10.1016/j.jiec.2020.09.017.
    34. Wu, H., et al., Robust superhydrophobic and superoleophilic filter paper via atom transfer radical polymerization for oil/water separation. Carbohydr Polym, 2018. 181: p. 419-425.DOI: 10.1016/j.carbpol.2017.08.078.
    35. Yang, X., et al., A facile, clean construction of biphilic surface on filter paper via atmospheric air plasma for highly efficient separation of water-in-oil emulsions. Separation and Purification Technology, 2021. 255.DOI: 10.1016/j.seppur.2020.117672.
    36. Zhao, P., et al., Surface modification of polyamide meshes and nonwoven fabrics by plasma etching and a PDA/cellulose coating for oil/water separation. Applied Surface Science, 2019. 481: p. 883-891.DOI: 10.1016/j.apsusc.2019.03.152.
    37. Zhou, D.-L., et al., Fabrication of superhydrophilic and underwater superoleophobic membranes for fast and effective oil/water separation with excellent durability. Journal of Membrane Science, 2021. 620.DOI: 10.1016/j.memsci.2020.118898.
    38. Deng, Y., et al., Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral oligomeric silsesquioxane for ultrafast oil/water separation. Chemical Engineering Journal, 2020. 379.DOI: 10.1016/j.cej.2019.122391.
    39. Fang, Y., et al., Facile Generation of Durable Superhydrophobic Fabrics toward Oil/Water Separation via Thiol-Ene Click Chemistry. Industrial & Engineering Chemistry Research, 2020. 59(13): p. 6130-6140.DOI: 10.1021/acs.iecr.9b06761.
    40. Zeng, X., et al., Novel pH-Responsive Smart Fabric: From Switchable Wettability to Controllable On-Demand Oil/Water Separation. ACS Sustainable Chemistry & Engineering, 2018. 7(1): p. 368-376.DOI: 10.1021/acssuschemeng.8b03675.
    41. Dang, Z., et al., In Situ and Ex Situ pH-Responsive Coatings with Switchable Wettability for Controllable Oil/Water Separation. ACS Appl Mater Interfaces, 2016. 8(45): p. 31281-31288.DOI: 10.1021/acsami.6b09381.
    42. Ou, J., et al., Unexpected superhydrophobic polydopamine on cotton fabric. Progress in Organic Coatings, 2020. 147.DOI: 10.1016/j.porgcoat.2020.105777.
    43. de Gennes, P.G., Wetting: statics and dynamics. Reviews of Modern Physics, 1985. 57(3): p. 827-863.DOI: 10.1103/RevModPhys.57.827.
    44. Ding, D., et al., Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions. Journal of Membrane Science, 2018. 565: p. 303-310.DOI: 10.1016/j.memsci.2018.08.035.
    45. Wei, Z., et al., A novel high-durability oxidized poly (arylene sulfide sulfone) electrospun nanofibrous membrane for direct water-oil separation. Separation and Purification Technology, 2020. 234.DOI: 10.1016/j.seppur.2019.116012.
    46. Shang, Q., et al., Facile fabrication of environmentally friendly bio-based superhydrophobic surfaces via UV-polymerization for self-cleaning and high efficient oil/water separation. Progress in Organic Coatings, 2019. 137.DOI: 10.1016/j.porgcoat.2019.105346.
    47. Chen, S., Y. Cao, and J. Feng, Polydopamine as an efficient and robust platform to functionalize carbon fiber for high-performance polymer composites. ACS Appl Mater Interfaces, 2014. 6(1): p. 349-56.DOI: 10.1021/am404394g.
    48. Cao, Y., et al., Mussel-inspired chemistry and Michael addition reaction for efficient oil/water separation. ACS Appl Mater Interfaces, 2013. 5(10): p. 4438-42.DOI: 10.1021/am4008598.
    49. Ding, Y.H., M. Floren, and W. Tan, Mussel-inspired polydopamine for bio-surface functionalization. Biosurf Biotribol, 2016. 2(4): p. 121-136.DOI: 10.1016/j.bsbt.2016.11.001.
    50. Lee, H., et al., Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007. 318(5849): p. 426-30.DOI: 10.1126/science.1147241.
    51. Della Vecchia, N.F., et al., Building-Block Diversity in Polydopamine Underpins a Multifunctional Eumelanin-Type Platform Tunable Through a Quinone Control Point. Advanced Functional Materials, 2013. 23(10): p. 1331-1340.DOI: 10.1002/adfm.201202127.
    52. Hong, S., et al., Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation. Advanced Functional Materials, 2012. 22(22): p. 4711-4717.DOI: 10.1002/adfm.201201156.
    53. d'Ischia, M., et al., Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy. Acc Chem Res, 2014. 47(12): p. 3541-50.DOI: 10.1021/ar500273y.
    54. Liebscher, J., et al., Structure of polydopamine: a never-ending story? Langmuir, 2013. 29(33): p. 10539-48.DOI: 10.1021/la4020288.
    55. Della Vecchia, N.F., et al., Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties. Langmuir, 2014. 30(32): p. 9811-8.DOI: 10.1021/la501560z.
    56. Ponzio, F., et al., Oxidant Control of Polydopamine Surface Chemistry in Acids: A Mechanism-Based Entry to Superhydrophilic-Superoleophobic Coatings. Chemistry of Materials, 2016. 28(13): p. 4697-4705.DOI: 10.1021/acs.chemmater.6b01587.
    57. Wei, Q., et al., Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry, 2010. 1(9).DOI: 10.1039/c0py00215a.
    58. Zuo, J.-H., et al., Ultrahigh flux of polydopamine-coated PVDF membranes quenched in air via thermally induced phase separation for oil/water emulsion separation. Separation and Purification Technology, 2018. 192: p. 348-359.DOI: 10.1016/j.seppur.2017.10.027.
    59. Luo, C. and Q. Liu, Oxidant-Induced High-Efficient Mussel-Inspired Modification on PVDF Membrane with Superhydrophilicity and Underwater Superoleophobicity Characteristics for Oil/Water Separation. ACS Appl Mater Interfaces, 2017. 9(9): p. 8297-8307.DOI: 10.1021/acsami.6b16206.
    60. Zuo, J.-H., et al., Janus polyvinylidene fluoride membranes fabricated with thermally induced phase separation and spray-coating technique for the separations of both W/O and O/W emulsions. Journal of Membrane Science, 2020. 595.DOI: 10.1016/j.memsci.2019.117475.
    61. Shang, B., et al., Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation. J Colloid Interface Sci, 2016. 482: p. 240-251.DOI: 10.1016/j.jcis.2016.07.081.
    62. Wang, J., H. Wang, and G. Geng, Flame-retardant superhydrophobic coating derived from fly ash on polymeric foam for efficient oil/corrosive water and emulsion separation. J Colloid Interface Sci, 2018. 525: p. 11-20.DOI: 10.1016/j.jcis.2018.04.069.
    63. Ding, L., J. Gao, and T.-S. Chung, Schiff base reaction assisted one-step self-assembly method for efficient gravity-driven oil-water emulsion separation. Separation and Purification Technology, 2019. 213: p. 437-446.DOI: 10.1016/j.seppur.2018.12.055.
    64. Liu, N., et al., Hierarchical architectures of Ag clusters deposited biomimetic membrane: Synthesis, emulsion separation, catalytic and antibacterial performance. Separation and Purification Technology, 2020. 241.DOI: 10.1016/j.seppur.2020.116733.
    65. Gao, N. and Z.-K. Xu, Ceramic membranes with mussel-inspired and nanostructured coatings for water-in-oil emulsions separation. Separation and Purification Technology, 2019. 212: p. 737-746.DOI: 10.1016/j.seppur.2018.11.084.
    66. Xu, Z., K. Miyazaki, and T. Hori, Fabrication of polydopamine-coated superhydrophobic fabrics for oil/water separation and self-cleaning. Applied Surface Science, 2016. 370: p. 243-251.DOI: 10.1016/j.apsusc.2016.02.135.
    67. He, Y., et al., Immobilization of poly(N-acryoyl morpholine) via hydrogen-bonded interactions for improved separation and antifouling properties of poly(vinylidene fluoride) membranes. Reactive and Functional Polymers, 2018. 123: p. 80-90.DOI: 10.1016/j.reactfunctpolym.2017.12.014.
    68. Wang, X., et al., Beadlike Porous Fibrous Membrane with Switchable Wettability for Efficient Oil/Water Separation. Industrial & Engineering Chemistry Research, 2020. 59(23): p. 10894-10903.DOI: 10.1021/acs.iecr.0c01103.
    69. Qu, M., et al., Facile fabrication of TiO2-functionalized material with tunable superwettability for continuous and controllable oil/water separation, emulsified oil purification, and hazardous organics photodegradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 610.DOI: 10.1016/j.colsurfa.2020.125942.
    70. Qu, M., et al., A superwettable functionalized-fabric with pH-sensitivity for controlled oil/water, organic solvents separation, and selective oil collection from water-rich system. Separation and Purification Technology, 2021. 254.DOI: 10.1016/j.seppur.2020.117665.
    71. Wang, D.C., et al., Smart nonwoven fabric with reversibly dual-stimuli responsive wettability for intelligent oil-water separation and pollutants removal. J Hazard Mater, 2020. 383: p. 121123.DOI: 10.1016/j.jhazmat.2019.121123.
    72. Tang, L., et al., Three-dimensional adsorbent with pH induced superhydrophobic and superhydrophilic transformation for oil recycle and adsorbent regeneration. J Colloid Interface Sci, 2020. 575: p. 231-244.DOI: 10.1016/j.jcis.2020.04.106.
    73. Saini, B., et al., A novel stimuli-responsive and fouling resistant PVDF ultrafiltration membrane prepared by using amphiphilic copolymer of poly(vinylidene fluoride) and Poly(2-N-morpholino)ethyl methacrylate. Journal of Membrane Science, 2020. 603.DOI: 10.1016/j.memsci.2020.118047.
    74. Ren, J., et al., A novel TiO2@stearic acid/chitosan coating with reversible wettability for controllable oil/water and emulsions separation. Carbohydr Polym, 2020. 232: p. 115807.DOI: 10.1016/j.carbpol.2019.115807.
    75. Qu, M., et al., A multifunctional superwettable material with excellent pH-responsive for controllable in situ separation multiphase oil/water mixture and efficient separation organics system. Applied Surface Science, 2020. 515.DOI: 10.1016/j.apsusc.2020.145991.
    76. Ma, Z., G. Shu, and X. Lu, Preparation of an antifouling and easy cleaning membrane based on amphiphobic fluorine island structure and chemical cleaning responsiveness. Journal of Membrane Science, 2020. 611.DOI: 10.1016/j.memsci.2020.118403.
    77. Li, L., et al., Cellulosic sponges with pH responsive wettability for efficient oil-water separation. Carbohydr Polym, 2020. 237: p. 116133.DOI: 10.1016/j.carbpol.2020.116133.
    78. Yan, T., et al., Magnetic textile with pH-responsive wettability for controllable oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019. 575: p. 155-165.DOI: 10.1016/j.colsurfa.2019.04.083.
    79. Wang, F., et al., Highly-efficient separation of oil and water enabled by a silica nanoparticle coating with pH-triggered tunable surface wettability. J Colloid Interface Sci, 2019. 557: p. 65-75.DOI: 10.1016/j.jcis.2019.08.114.
    80. Saini, B., S. Khuntia, and M.K. Sinha, Incorporation of cross-linked poly(AA-co-ACMO) copolymer with pH responsive and hydrophilic properties to polysulfone ultrafiltration membrane for the mitigation of fouling behaviour. Journal of Membrane Science, 2019. 572: p. 184-197.DOI: 10.1016/j.memsci.2018.11.017.
    81. Qu, M., et al., Multifunctional Superwettable Material with Smart pH Responsiveness for Efficient and Controllable Oil/Water Separation and Emulsified Wastewater Purification. ACS Appl Mater Interfaces, 2019. 11(27): p. 24668-24682.DOI: 10.1021/acsami.9b03721.
    82. Guo, Z., et al., Macroporous monoliths with pH-induced switchable wettability for recyclable oil separation and recovery. J Colloid Interface Sci, 2019. 534: p. 183-194.DOI: 10.1016/j.jcis.2018.09.021.
    83. Dai, G., et al., Conversion of skin collagen fibrous material waste to an oil sorbent with pH-responsive switchable wettability for high-efficiency separation of oil/water emulsions. Journal of Cleaner Production, 2019. 226: p. 18-27.DOI: 10.1016/j.jclepro.2019.03.287.
    84. Cheng, M., et al., Preparation and properties of pH-responsive reversible-wettability biomass cellulose-based material for controllable oil/water separation. Carbohydr Polym, 2019. 203: p. 246-255.DOI: 10.1016/j.carbpol.2018.09.051.
    85. Chen, K., et al., Smart UV-curable fabric coatings with self-healing ability for durable self-cleaning and intelligent oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019. 565: p. 86-96.DOI: 10.1016/j.colsurfa.2019.01.003.
    86. Bar, C., et al., Development of a High-Flux Thin-Film Composite Nanofiltration Membrane with Sub-Nanometer Selectivity Using a pH and Temperature-Responsive Pentablock Co-Polymer. ACS Appl Mater Interfaces, 2019. 11(34): p. 31367-31377.DOI: 10.1021/acsami.9b10273.
    87. Yan, T., et al., A magnetic pH-induced textile fabric with switchable wettability for intelligent oil/water separation. Chemical Engineering Journal, 2018. 347: p. 52-63.DOI: 10.1016/j.cej.2018.04.021.
    88. Cai, Y., et al., A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation. Journal of Membrane Science, 2018. 555: p. 69-77.DOI: 10.1016/j.memsci.2018.03.042.
    89. Ma, W., et al., Dual pH- and ammonia-vapor-responsive electrospun nanofibrous membranes for oil-water separations. Journal of Membrane Science, 2017. 537: p. 128-139.DOI: 10.1016/j.memsci.2017.04.063.
    90. Lei, Z., et al., Surface modification of melamine sponges for pH-responsive oil absorption and desorption. Applied Surface Science, 2017. 416: p. 798-804.DOI: 10.1016/j.apsusc.2017.04.165.
    91. Cheng, B., et al., Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation. Journal of Membrane Science, 2017. 534: p. 1-8.DOI: 10.1016/j.memsci.2017.03.053.
    92. Lei, Z., et al., Thermoresponsive Melamine Sponges with Switchable Wettability by Interface-Initiated Atom Transfer Radical Polymerization for Oil/Water Separation. ACS Appl Mater Interfaces, 2017. 9(10): p. 8967-8974.DOI: 10.1021/acsami.6b14565.
    93. Ou, R., et al., Robust Thermoresponsive Polymer Composite Membrane with Switchable Superhydrophilicity and Superhydrophobicity for Efficient Oil-Water Separation. Environ Sci Technol, 2016. 50(2): p. 906-14.DOI: 10.1021/acs.est.5b03418.
    94. Li, J.-J., L.-T. Zhu, and Z.-H. Luo, Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation. Chemical Engineering Journal, 2016. 287: p. 474-481.DOI: 10.1016/j.cej.2015.11.057.
    95. Zhou, Y.-N., J.-J. Li, and Z.-H. Luo, PhotoATRP-Based Fluorinated Thermosensitive Block Copolymer for Controllable Water/Oil Separation. Industrial & Engineering Chemistry Research, 2015. 54(43): p. 10714-10722.DOI: 10.1021/acs.iecr.5b02394.
    96. Zhang, Y., et al., Construction of stable Ti3+-TiO2 photocatalytic membrane for enhanced photoactivity and emulsion separation. Journal of Membrane Science, 2021. 618.DOI: 10.1016/j.memsci.2020.118748.
    97. Zhang, Z.-M., et al., Green and robust superhydrophilic electrospun stereocomplex polylactide membranes: Multifunctional oil/water separation and self-cleaning. Journal of Membrane Science, 2020. 593: p. 117420.DOI: https://doi.org/10.1016/j.memsci.2019.117420.
    98. Chen, X., et al., A smart engineering material with UV-induced switchable wettability for controllable oil/water separation. Journal of Chemical Technology & Biotechnology, 2018. 93(2): p. 476-488.DOI: 10.1002/jctb.5378.
    99. Zhu, H., et al., Fabrication of Photocontrolled Surfaces for Oil/Water Separation through Sulfur(VI) Fluoride Exchange. Chemistry, 2017. 23(59): p. 14712-14717.DOI: 10.1002/chem.201703309.
    100. Song, S., et al., Underwater superoleophobic mesh based on BiVO 4 nanoparticles with sunlight-driven self-cleaning property for oil/water separation. Chemical Engineering Journal, 2017. 320: p. 342-351.DOI: 10.1016/j.cej.2017.03.071.
    101. Zhang, G., et al., A switchable mesh for on-demand oil–water separation. Journal of Materials Chemistry A, 2014. 2(37).DOI: 10.1039/c4ta03034f.
    102. Xu, L., et al., Mercury ion responsive wettability and oil/water separation. ACS Appl Mater Interfaces, 2014. 6(16): p. 13324-9.DOI: 10.1021/am5038214

    無法下載圖示 全文公開日期 2031/08/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE