簡易檢索 / 詳目顯示

研究生: 李怡萱
I-Hsuan Lee
論文名稱: 一維機械系統之運動及力量伺服控制與實作
Position and Force Servo Control of a 1-DOF Mechanical System: Theory and Experiment
指導教授: 黃安橋
An-Chyau Huang
口試委員: 林紀穎
Chi-Ying Lin
蔡宜昌
Yi-Chang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 54
中文關鍵詞: 適應控制切換控制力量伺服控制
外文關鍵詞: adaptive control, switching control, force servo control
相關次數: 點閱:261下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般系統在一自由度上運動時,因物理上Causality之限制,而僅可擇一進行位置或力量之控制。本文在此提出一新切換控制器,其以控制器間自動互作切換之方式,以結合此兩控制特性於一體。在自由空間運動控制與順應控制方面,設計一函數近似法為基礎之適應阻抗控制器及力量估測器,以估測處理系統中之未知項,且免除力量感測器之安裝;另採用傳統PID力量伺服控制器作為力量控制。藉此使系統達到兼具位置與力量控制之性能,且亦可平順渡過與環境接觸之過渡期。而其中並以一具有平滑反曲線的CMP函數(Cycloidal Motion Program),作為可平緩調變其切換比例之依據。本文並首次提出「切換點」之概念,以明確表示其確切之切換時機。本研究除了以嚴謹之數學以驗證系統穩定性外,亦以實驗來測試此新切換控制器在不同環境下之有效性,並特以力量感測器回授來比較驗證力量估測器之準確度。


    Control of any mechanical system in one degree of freedom has to satisfy the physical limitation called causality which gives the restriction that either force or position can be controlled. This thesis proposes a new switching controller to a voice coil motor for combining both control activities smoothly into one simple control strategy. An adaptive impedance controller based on the function approximation technique is designed for the free space tracking while a PID loop is constructed to provide force servo performance. A CMP sigmoidal function is employed to give smoothness of the transitions between two controllers. Rigorous mathematical analysis for the closed loop stability and the boundedness of internal signals is performed here. To justify the efficacy of the proposed design, an experimental setup is built and several experiments are conducted.

    中文摘要 Abstract 誌謝 目錄 圖表索引 第一章 緒論 第二章 控制器設計 2.1 音圈馬達之數學模型 2.2 PID力量伺服控制 2.3 FAT適應阻抗控制 2.4 新切換控制 第三章 實驗設備與實驗結果 3.1 實驗架構 3.2 實驗規劃 3.3 PID力量控制 3.4 FAT適應阻抗控制 3.5 新切換控制 第四章 結論 參考文獻 作者簡介

    [1] N. Hogan, “Impedance control: an approach to manipulation: Part1-theory, Part 2-implementration, Part 3-an approach to manipulation”, ASME Journal of Dynamic Systems, Measurement, and Control, vol.107, pp. 1-24, 1985.
    [2] W. Goldsmith, Impact: the Theory and Physical Behavior of Colliding Solids,
    Edward Arnold Publishers, London, 1595.
    [3] K. Youcef-Toumi and D. A. Gutz, “Impact and force control,” in Proceeding IEEE International Conference on Robotics and Automation, pp. 410-416, 1989.
    [4] Z. Ranko, V. F. Ángel, G. G. Pedro, L. G. Ángel, “An architecture for robot force and impact control,” Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, pp. 1-6, 2006.
    [5] T. J. Tarn, Y. Y. Wu, N. Xi and A. Isidori, “Force regulation and contact transition control,” IEEE Control System Magazine, vol. 16, pp. 32-40, Feb. 1996.
    [6] R. P. Paul, “Problems and research issues associated with the hybrid control of force and displacement,” Proceedings of IEEE International Conference on Robotics and Automation, April 1987.
    [7] R. Ortega, R. Carelli, M. Amestegui and R. Kelly, “On adaptive impedance control of robot manipulators,” Proceedings of IEEE Conference on Robotics and Automation, pp. 572-577, 1989.
    [8] J-J E. Slotine and W. Li, “Adaptive strategies in constrained manipulators,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 595-601, 1987.
    [9] W. S. Lu and H. Q. Meng, “Impedance control with adaptation for robotic manipulations,” IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 408-415, 1991.
    [10] A. Nshvhsufhuti and D. P. Garg, “Adaptive control and impedance control for dual robotic arms manipulating a common heavy load,” Proceedings of IEEE Conference on advanced intelligent mechatronics, vol. 2, pp. 683-688, 2001.
    [11] H. Seraji, D. Lim, and R.Steele, “Experiments in contact control,” Journal of Robotic Systems, vol. 13, no. 2, pp. 53-73, Feb. 1996.
    [12] H. Seraji and R. Colbaugh, “Force tracking in impedance control,” International Journal of Robotic Research, vol. 16, no. 1, pp. 97-117, Feb. 1997.
    [13] H. Seraji and R.Steele, “Nonlinear contact control for space station dexterous arms,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 899-906, Feb. 1998.
    [14] A. C. Huang and Y. S. Kuo, “Sliding control of nonlinear systems containing time-varying uncertainties with unknown bounds,” International Journal of Control, vol. 74, no. 3, pp. 252-264, 2001.
    [15] A. H. Soni, Mechanism Synthesis and Analysis, Scripta Book Co., Washington, 1974.
    [16] 游喬焜,以系統晶片結合力量感測器發展具軌跡與力量控制功能之機械手臂,國立台灣科技大學機械工程研究所,碩士學位論文,2009。
    [17] 陳威帆,直流馬達之適應性運動控制研究,國立台灣科技大學機械工程研究所,碩士學位論文,2006。
    [18] 葉柏園,音圈馬達之順應運動控制器設計與實作,國立台灣科技大學機械工程研究所,碩士學位論文,2011。
    [19] 郭有順,不確定時變系統之適應控制研究,國立台灣科技大學機械工程研究所,博士學位論文,2002。
    [20] 黃安橋,適應控制理論,國立台灣科技大學機械工程研究所,上課講義,2004。

    QR CODE