簡易檢索 / 詳目顯示

研究生: 李岳峰
YUEH-FENG LEE
論文名稱: 複合功能轉印設備及製程開發
Development of Hybrid Function Imprinting Machine and Process
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 石伊蓓
Yi- Pei Shih
張天立
Tien-Li Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 138
中文關鍵詞: 微奈米轉印保壓模具氣體輔助轉印
外文關鍵詞: nanoimprint lithography, packing device, gas-assisted imprint
相關次數: 點閱:245下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對複合功能轉印設備開發為主軸,並研究其熱壓轉印、紫外光固化轉印、氣體輔助轉印等製程。所開發之複合功能轉印設備提供一個穩定、高精度、大面積微奈米結構轉印之平台。
    熱壓轉印製程中,藉由保壓模具之鎖模機構提供高穩定性的微結構轉印製程,使塑料填充模穴後,於冷卻階段仍能保有穩定的壓力,能於轉印Cu模與Ni模之V-cut微結構有99%之轉寫率,轉印金字塔微結構導光板時能達到98.2%轉寫率,轉印12吋大面積微透鏡導光板時能具有大面積轉寫率達94.7%。氣體輔助轉印製程中,成功於玻璃基版上轉印hydrogen silsesquioxane (HSQ)之材料,其奈米級轉寫結構具有低於5%之反射率。本研究應用複合功能機台能成功開發微結構光學元件製作技術,預期能運用於大面積抗反射結構、微透鏡陣列等光學元件製作。


    Nanoimprint lithography (NIL) is a high throughput and high-resolution patterning method. This study is devoted to develop hybrid function imprinting machine and process. The functions includes hot embossing, ultraviolet-curing (UV-curing), and gas-assisted imprint. In addition, we intend to develop an effective fabrication process for large area microstructures.
    In hot embossing experiments, we applied a synchronous method with a special designed packing device to achieve a fast nano/micro structure imprinting process with high transfer rate. In gas-assisted imprinting experiments, nano anti-reflection structures were successfully imprinted on bare glasses with hydrogen silsesquioxane (HSQ). The reflective ratio of the structures is below 5% after baking process. Nano and micro optical structures were successfully fabricated in this work with the developed hybrid function imprinting machine. It shows the potential of fabricating large area optical applications with the developed machine and process, such as reflective structures and micro lens array.

    摘要i Abstractii 目錄iii 圖目錄vii 表目錄xii 第一章、緒論1 1.1前言1 1.2研究動機與目的2 1.3研究重要性3 1.4 論文架構3 第二章、文獻回顧5 2.1微奈米轉印成形文獻5 2.2熱壓奈米轉印設備文獻13 2.3背光模組之導光板文獻17 2.4快速微熱壓轉印24 2.5氣體輔助轉印製程文獻回顧28 2.6 紫外光固化轉印文獻回顧35 第三章、複合功能轉印設備設計及製作38 3.1複合功能轉印設備設計38 3.1.1加壓系統39 3.1.2加熱系統41 3.1.3冷卻系統41 3.1.4紫外光固化系統42 3.2可程式控制系統及介面42 3.2.1控制系統43 3.2.2控制介面47 3.3熱壓轉印成形模式51 3.4紫外光固化轉印成形模式53 3.5氣體輔助轉印成形54 3.5.1氣體輔助轉印設備之設計與組立54 第四章、驗證實驗規劃 58 4.1 設備穩定性測試58 4.2 熱壓轉印成型實驗58 4.2.1 熱壓轉印模具與模片59 4.2.2 保壓模具64 4.2.3 實驗規劃66 4.3 氣體輔助轉印成形實驗75 4.3.1 氣體輔助轉印模具與模片75 4.3.2 實驗規劃79 4.4 量測儀器介紹82 4.4.1 表面輪廓儀82 4.4.2 掃描式電子顯微鏡(SEM)83 4.4.3雷射共軛焦顯微鏡85 第五章、實驗結果與討論87 5.1設備穩定性測試分析87 5.1.1 Load cell87 5.1.2 氣壓缸重複性實驗90 5.1.3 氣壓與時間的穩定性試驗91 5.1.4 加熱板溫度恆溫測試92 5.2熱壓轉印成形實驗93 5.3 金字塔型導光板微結構轉印99 5.4微透鏡導光板轉印104 5.5 氣體輔助轉印成型實驗108 第六章、結論113 6.1結論113 6.2未來發展方向117 第七章、參考文獻119

    [1]. L. Lin, Y. T. Cheng, C. J. Chiu, “Comparative study of hot embossed micro structures fabricated by laboratory and commercial environments”, Microsystem Technologies, v. 4, pp. 113-116, 1998.
    [2]. K. Kim, S. Park, J. B. Lee, H. Manohara, Y. Desta, M. Murphy, C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology”, Microsystem Technologies, v. 9, pp. 5–10, 2002.
    [3]. T. Rabe, P. Kuchenbecker, B. Schulz, “Hot Embossing: An Alternative Method to Produce”, International Journal of Applied Ceramic Technology, v. 4, pp. 38-46, 2007.
    [4]. T. Borzenko, P. Fries, G. Schmidt, L. W. Molenkamp, M. Schirmer, “A process for the fabrication of large areas of high resolution, high aspect ratio silicon structures using a negative tone Novolak based e-beam resist”, Microelectronic Engineering, v. 86, pp. 726-729, 2009.
    [5]. M. Li, H. Tan, L. Chen, J. Wang, S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications”, Journal of Vacuum Science & Technology, v.21, pp. 660-663, 2003.
    [6]. S. D. Zilio, G. D. Giustina, G. Brusatin, M. Tormen, “Microlens arrays on large area UV transparent hybrid sol–gel materials for optical tools”, Microelectronic Engineering, v.87, pp. 1-4, 2009.
    [7]. X. J. Shen, L. W. Pan, L. Lin, “Microplastic embossing process: experimental and theoretical characterizations”, Sensors and Actuators, v. 97-98, pp. 428-433, 2002.
    [8]. N. S. Ong, Y. H. Koh, Y. Q. Fu, “Microlens array produced using hot embossing process”, Microelectronic Engineering, v. 60, pp. 365-379, 2002.
    [9]. C. R. Lin, R. H. Chen, C. Hung, “Preventing non-uniform shrinkage in open-die hot embossing of PMMA microstructures”, Journal of Materials Processing Technology, v. 140, pp. 173-178, 2003.
    [10]. C. H. Hsueh, S. Lee, H. Y. Lin, L. S. Chen, W. H. Wang, “Analyses of mechanical failure in nanoimprint processes”, Materials Science and Engineering, v. 433, pp. 316-322, 2006.
    [11]. Y. Hirai, Y. Onishi, T. Tanabe, M. Shibata, T. Iwasaki, Y. Iriy, “Pressure and resist thickness dependency of resist time evolutions profiles in nanoimprint lithography”, Microelectronic Engineering, v. 85, pp. 842-845, 2008.
    [12]. J. M. Li , C. Liu, J. Peng, “Effect of hot embossing process parameters on polymer flow and microchannel accuracy produced without vacuum”, Journal of Materials Processing Technology, v. 207, pp. 163-171, 2008.
    [13]. H. Y. Hsiung, H. Y. Chen, C. K. Sung, “Temperature effects on formation of metallic patterns in direct nanoimprint technique-Molecular dynamics simulation and experiment”, Journal of Materials Processing Technology, v. 209, pp. 4401-4406, 2009.
    [14]. K. J. Morton, G. Nieberg, S. Bai, S. Y Chou, “Wafer-scale patterning of sub-40 nmdiameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprintand etching”, Nanotechnology, v. 19, pp. 1-6, 2008.
    [15]. H. Becker, U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures”, Sensors and Actuators, v. 83, pp. 130–135, 2000.
    [16]. K. Deguchi, N. Takeuchi, A. Shimizu, “Evaluation of pressure uniformity using a pressure-sensitive film and calculation of wafer distortions caused by mold press in imprint lithography”, Japanese Journal of Applied Physics, v.41, pp. 4178-4181, 2002.
    [17]. C. R. Lin, R. H. Chen, C. Hung, “The characterisation and finite-element analysis of a polymer under hot pressing”, International Journal of Advanced Manufacturing Technology, v. 20, pp. 230-235, 2002.
    [18]. H. S. Lee, S. K. Lee, T. H. Kwon, S. S. Lee, “Birefringence distribution in V-grooved optical parts by hot embossing process”, IEEE/LEOS International Conference on Optical MEMS, pp. 135-136, 2002.
    [19]. 羅金德,“超音波加熱壓印微結構的研究”,臺灣大學碩士論文,民國91年6 月。
    [20]. 張致遠,“創新型微奈米軟模轉印技術之研發與應用”,台灣大學博士論文,民國95年6月。
    [21]. EVGR510HE,http://www.evgroup.com/en/ 。
    [22]. D. Feng, G. Jin, Y. Yan and S. Fan, “High quality light guide plates that can control the illumination angle based on microprism structures”, Applied Physics Letters, v. 85, pp. 6016-6018, 2004.
    [23]. D. Feng, Y. Yan, X. Yang, G. Jin, and S. Fan, “Novel integrated light-guide plates for liquid crystal display backlight ”, Journal of optics A: pure and applied optics, v. 5, pp. 111-117, 2005.
    [24]. S. Aoyama, A. Funamoto, K. Imanaka, “Hybrid normal-reverse prism coupler for light-emitting diode backlight systems”, Applied Optics, v. 43 pp. 7273-7278, 2006.
    [25]. T. Okumura, A. Tagaya, Y. Koike, “Highly-efficient backlight for liquid crystal display having no optical films” , Applied Physics Letters, v. 83, pp. 2515-2517, 2003.
    [26]. A. Tagaya, M. Nagai, Y. Koike, K. Yokoyama, “Thin Liquid-Crystal Display Backlight System with Highly Scattering Optical Transmission Polymers”, Applied Optics, v. 40, pp. 6274-6280, 2001.
    [27]. S. R. Park, O. J. Kwon, D. Shin, S. H. Song, “Grating micro-dot patterned light guide plates for LED backlights”, Optics Express, v. 15 , pp. 2888-2899, 2007.
    [28]. 張自恭、林奇鋒、方育斌,”背光模組光學設計”,光連第49 期,2004/1。
    [29]. T. Masaki, “Nondiffusive light guide plate, lens film and surface light source assembly”, 1999/8/17, US pattern 5940571.
    [30]. S. Ohkawa, “Surface light source device of side light type and light control element”, 2001/12/11, US pattern 6328453.
    [31]. M. Shinohana, S. Aoyama, “Surface light source device, elements therefor and apparatus using the same”, 2001/5/15, US pattern 6231200.
    [32]. W. H. Yang, Y. Y. Chang, “Sheetless integrated light guide film for LCD backlight”, the 14th international display workshops (IDW), 2007.
    [33]. Y. Y. Chang, W. H. Yang, H. C. Yeh, C. J. Ting, H. H. Lin, and J. H. Tsai, “Integrated light-guided plates (LGPs) with optimized pyramid-like microstructures”, the 16th international display workshops (IDW), 2009.
    [34]. T. E. Kimerling, W. Liu, B. H. Kim, D. Yao, “Rapid hot embossing of polymer microfeatures”, Microsystem Technologies, v. 207, pp. 730-735, 2006.
    [35]. S. K. Hong, Y. M. Heo, J. Kang, “Replication of polymeric micro patterns by rapid thermal pressing with induction heating apparatus ”, Proceedings of the 3rd IEEE International Conference. on Nano/Micro Engineered and Molecular Systems January 6-9, Sanya, China, 2008.
    [36]. J. H. Chang, S. Y. Yang, “Gas pressurized hot embossing for transcription of micro-features”, Microsystem Technologies, v. 10, pp. 76-80, 2003.
    [37]. J. H. Chang, F. S. Cheng, C. C. Chao, Y. C. Weng, S. Y. Yang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces”, Journal of Vacuum Science & Technology A , v. 23, pp. 1687-1690, 2005.
    [38]. J. H. Chang, S. Y. Yang, “Development of fluid-based heating and pressing systems for micro hot embossing”, Microsystem Technologies, v. 11, pp. 396-403, 2005.
    [39]. J. h Jeong, K. D. Kim, Y. S. Sim, H. Sohn, E. S. Lee, “A step-and-repeat UV-nanoimprint lithography process using an elementwise patterned stamp”, Microelectronic Engineering, v. 82, pp. 180-188, 2005.
    [40]. H. Gao, H. Tan, W. Zhang, K. Morton, S. Y. Chou, “Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100mm field”, Nano Letters, v. 6, pp. 2438-2441, 2006.
    [41]. F. S. Cheng, S. Y. Yang, C. C. Chen, “Novel hydrostatic pressuring mechanism for soft UV-imprinting processes”, Journal of Vacuum Science & Technology B, v. 26, pp. 132-136, 2008.
    [42]. V. Kalima, I. Vartiainen, T. Saastamoinen, M. Suvanto, M. Kuittinen, T. T. Pakkanen, “UV-curable ZnS/polymer nanocomposite for replication of micron and submicron features”, Optical Materials, v. 31, pp. 1540-1546, 2009.
    [43]. M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, H. Nounu, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and Flash Imprint Lithography: A new approach to high-resolution patterning”, Proceedings of SPIE, v. 3676, pp. 379-389, 1999.
    [44]. H. Lee, S. Hong, K. Yang, and K. Choi, “Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography”, Applied Physics Letters, v. 88, pp. 143112, 2006.
    [45]. S. H. Ahn, J. W. Cha, H. Myung, S. M. Kim and S. Kang, “Continuous ultraviolet roll nanoimprinting process for replicating large-scale nano- and micropatterns”, Applied Physics Letters, v. 89, pp. 2131011-2131013, 2006.
    [46]. 張志聖,“快速微奈米熱壓轉印製程研究”,台灣科技大學碩士論文,民國99年7月。

    無法下載圖示 全文公開日期 2016/06/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE