簡易檢索 / 詳目顯示

研究生: 張志聖
Chih-Sheng Chang
論文名稱: 快速微奈米熱壓轉印製程研究
A study of fast hot embossing processes for micro and nano structure fabrication
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 陳炤彰
Chao-Chang A. Chen
楊申語
Sen-Yeu Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 159
中文關鍵詞: 微奈米轉印熱壓模具微結構抗沾黏層
外文關鍵詞: micro/nano imprint, hot embossing, mold, microstructure, anti-adhesive layer
相關次數: 點閱:338下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱壓轉印是微奈米轉印技術之一,並可能成為新世代的微奈米結構製造技術。但由於熱壓製程流程包括加熱、加壓與冷卻,造成製程時間過長。熱壓製程還需要突破縮短製程時間才能達到高效能量產的需求。本研究主要以分站式同步進行的概念輔以特殊設計的保壓模具以達成縮短熱壓製程的目的。本實驗將熱壓製程分為三個階段:預熱、轉印、冷卻。每個階段都能同步進行,因此大幅減少加熱至冷卻的時間,以達到整體製程時間的縮短,實驗結果成功有效轉印出微米與奈米結構。此外探討大氣電漿塗佈模具抗沾黏層之測試,當中利用接觸角的變化量測,以不同溫度、重複次數壓印、時效性進行實驗,以建立未來可應用在模具抗沾黏處理的新技術,將可以應用在快速熱壓轉印製程。


    Hot embossing is one of the micro/nano imprint techniques and an alternative candidate for the next generation patterning technology. However, the process needs a long cycle from heating, pressing to cooling. It has to be improved in order to become an efficient mass-production method. In this study, we applied a synchronous method with a special designed mold to reduce the cycle time of hot embossing process. In our experiment hot embossing process was split into three parts. Which are heating, imprinting and cooling. These three parts were able to be synchronous and therefore the cycle time of hot embossing was reduced. The synchronous method was successfully to replicate microstructure and nanostructure with high transfer rate. Furthermore, a study of anti-adhesive layer by atmospheric plasma was carried out. Operating parameter, temperature effect, durability and lifetime were evaluated by measuring the variation of contact angle in different experimental conditions. The establishment of a new technology applied on ant-adhesive process of mold. It will be used in fast hot embossing processes.

    摘要........................I Abstract................... II 誌謝.......................III 目錄....................... IV 圖目錄.....................IX 表目錄..................... XV 符號說明................... XVII 第一章緒論................. 1 1.1前言.................... 1 1.2研究動機與目的.......... 3 1.3論文架構................ 4 第二章 文獻回顧............ 6 2.1熱壓轉印相關論文........ 7 2.1.1材料.................. 8 2.1.2轉印參數.............. 12 2.1.3模仁.................. 18 2.1.4設備.................. 25 2.1.5快速熱壓相關文獻...... 26 2.2高分子特性.............. 30 2.2.1高分子結構............ 33 2.2.2高分子流變............ 37 2.3大氣電漿介紹............ 47 2.4表面能與接觸角量測...... 49 第三章實驗規劃及分析儀器介紹.51 3.1快速熱壓轉印製程實驗.... 51 3.1.1分站同步概念.......... 51 3.1.2保壓模具設計.......... 54 3.1.2.1特殊保壓模具設計.... 54 3.1.2.2 使用流程........... 57 3.1.3 模仁製作與抗沾黏處理說明...... 58 3.1.4 實驗設計............. 59 3.1.4.1 材料測試........... 59 3.1.4.2 溫度測試........... 61 3.1.4.3 保壓模具測試....... 62 3.1.4.4 縮短轉印時間測試... 63 3.1.4.5 奈米等級模仁測試... 64 3.1.5熱壓轉印實驗轉寫率驗證方式..... 64 3.2大氣漿塗佈抗沾黏層實驗參數設計....66 3.2.1塗佈測試.............. 66 3.2.2 溫度測試............. 67 3.2.3 壓力測試............. 67 3.2.4 重複壓印測試......... 67 3.2.5 時效性測試........... 68 3.3設備儀器介紹............ 68 3.3.1 奈米轉印熱壓機....... 68 3.3.2 凝膠滲透色譜儀(GPC).. 69 3.3.3示差掃描熱分析儀(DSC).70 3.3.4 表面輪廓儀........... 71 3.3.5 掃描式電子顯微鏡及高解析度場發射掃描式電子顯微鏡.72 3.3.6原子力顯微鏡(AFM)..... 75 3.3.7 大氣電漿機台......... 76 3.4.8 接觸角量測儀......... 77 第四章實驗結果與分析....... 78 4.1模仁量測................ 78 4.1.1 V溝微米模仁.......... 78 4.1.2奈米空孔矽模仁........ 80 4.1.3陽極氧化鋁模仁........ 82 4.2 微米結構模仁快速熱壓轉印結果與分析....... 85 4.2.1材料測試結果與分析.... 85 4.2.2溫度測試結果與分析.... 88 4.2.3保壓模具測試結果與分析.90 4.2.4縮短轉印時間測試結果與分析.92 4.2.5製程分析與改善........ 93 4.3 奈米結構模仁快速熱壓轉印結果與分析....... 97 4.3.1應用矽模仁轉印與分析.. 97 4.3.2 應用陽極氧化鋁轉印與分析...... 99 4.4 大氣電漿塗佈抗沾黏層測試結果與分析....... 104 4.4.1塗佈測試結果與分析.... 104 4.4.2溫度測試結果與分析.... 106 4.4.3壓力測試結果與分析.... 107 4.4.4重複轉印測試結果與分析.109 4.4.5時效性測試結果與分析...110 第五章 結論與未來展望...... 112 5.1結論.................... 112 5.2未來展望................ 113 附錄 A 熱壓轉印表面輪廓.... 117 附錄B 接觸角量測資料....... 125 附錄 C分子量量測........... 135 附錄D示差掃描熱分析儀(DSC).137

    [1]http://www.kenmos.com.tw/prouduct.htm
    [2]http://www.gap-optique.unige.ch/HomeExtras/
    [3]蔡宏營, 奈米轉印技術介紹
    [4]S.Y.Chou,P.R.Krauss,P.J.Renstrom, “Nanoimprint Lithography”,
    Physics Letter,vol.67,No.21,pp.31114-3116,1995
    [5]M.L.Williamsr, R.F.Landeal, J.D.Ferry“The Temperature Dependence of
    Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming
    Liquids”,Temperaturdee Pendencoef Relaxatiomne Chanisms,pp.3701,1955
    [6]L.J. Heydermana, H. Schift ,C. David, J. Gobrecht, T. Schweizer “
    Flow behaviour of thin polymer films used for hot embossing
    lithography”,Microelectronic Engineering,vol.54,No.3,
    pp.229–245,2000
    [7]A. Lebib, Y. Chen , E. Cambril, P. Youinou, V. Studer, M. Natali,A.
    Pe´pin, H.M. Janssen , R.P. Sijbesma“ Room-temperature and
    low-pressure nanoimprint lithography”,Microelectronic
    Engineering,vol.61 ,pp. 371–377 ,2002
    [8]K.Mohamed,M.M.Alkaisi,J.Smaill“Resist deformation at low temperature in
    nanoimprint lithography”,Current Applied Physics,vol. 6, No.3,pp.486–
    490 ,2006
    [9]H.C.Scheer,N.Bogdanski,M.Wissen,S.MÖllenbeck“Imprintability of
    polymers for thermal nanoimprint”,Microelectronic Engineering
    ,vol .85,No.5, pp.890–896 ,2008
    [10]T. Leveder , S. Landis , L. Davoust , N. Chaix “Optimization of
    demolding temperature for throughput improvement of
    nanoimprint lithography”,Microelectronic Engineer,vol.84
    ,No.9,pp.953–957 ,2007
    [11]S.Lan, H.J. Lee, S.H.Lee, J Ni, X. Lai , H.W.Lee , J.H. Song ,M G. Lee
    “Experimental and numerical study on the viscoelastic property of
    polycarbonate near glass transition temperature for micro thermal
    imprint process”,Materials and Design,vol.30, No.9,pp.3879–3884,2009
    [12]J.M. Li,C. Liu, J. Peng“Effect of hot embossing process parameters on
    polymer flow and microchannel accuracy produced without vacuum”,Journal
    of materials processing technology,vol.2 0 7, No.1,pp.163–171,2008
    [13]S .Lan, H.J.Lee , E .H.Kim , J. Ni , S.H.Lee , X.Lai , J.H Song ,N. K.
    Lee , Moon G. Lee “ A parameter study on the micro hot embossing
    process of glassy polymer for pattern replication” ,Microelectronic
    Engineering ,Vol.81,No.12,2009
    [14]S.Park,H. Schift, C. Padeste , B. Schnyder ,R.Kötz , J. Gobrecht“ Anti-
    adhesive layers on nickel stamps for nanoimprint
    lithography” ,Microelectronic Engineering,vol.73,No.3, pp.196–201 ,2004
    [15]W.B.Young“Analysis of the nanoimprint lithography with a
    viscous model”,Microelectronic Engineering,vol.77,No.3
    pp.405–411,2005
    [16]C.W.Wu, Y.K.Shen,S.Y.Chuang,C.S.Wei “Anti-adhesive effects of diverse
    self-assembled monolayers in nanoimprint lithography”, Sensors and
    Actuators, vol.139 ,No.1,pp.145–151,2007
    [17]T.L.Chang,J.C.Wang“Study of Nanopattern Forming with Chemical Coatings
    for Silicon-Based Stamp in Nanoimprint Process”,Proceedings of the 7th
    IEEE International Conference on Nanotechnology August 2 - 5, Hong Kong,
    2007
    [18]W.H. Shin, “Design of thermal imprinting system with uniform residual
    thickness”, Microelectronic Engineering,vol.86,No.11,.pp. 2222-2227,2009
    [19]T. E .Kimerling, W. Liu,B.H. Kim,D.Yao“Rapid hot embossing of polymer
    microfeatures”, Microsystem Technologies,vol.207,No.1,pp.730-735,
    2006
    [20]S.K.Hong, Y.M.Heo,J.Kang “Replication of Polymeric Micro
    Patterns by Rapid Thermal Pressing with Induction Heating
    Apparatus ”,Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro
    Engineered and Molecular Systems January 6-9,Sanya,China,2008
    [21]Materials science and Engineering an introduction William D.
    Callister, JR 高立圖書有限公司
    [22]高分子流變學基礎 吳鐵鈞 吳德峰 化學工業出版社
    [23]高分子材料導論 徐武軍 五南圖書出版社
    [24]J.R.Hollahan et al. Eds “Techniques and Applications of Plasma
    Chemistry”, Wiley,1974.
    [25]P.Fauchais,A.Vardell,“Thermal Plasmas”,IEEE Trans.Plasma
    Science Ieee Transaction,vol.25,No5.,pp.1258-1280,Dec,1997
    [26]M.Goldman , R.S.Sigmond “Corona and insulation”,IEEE Trans.Elect.
    Insulation,vol.17,No.2,pp.90-105,1982
    [27]B.Emission,U.Kogelschatz“Modeling and application of ailent
    discharge plasma”,IEEE Trans. Plasma Sources Science and
    Technology,vol.19 ,No.2,pp. 309-323,Apr.1991
    [28]J.Y.Jeong,S.E.Babayan,V.J.Tu,J.Park,I.Henins,R.F.Hicks,G
    S.Selwyn ,“ Etching materials with an atmospheric-pressure plasma
    jet” ,Plasma Sources Science and technology,vol.7,No.3,
    pp.282–285,1998
    [29]G.S.Selwyn,H.W.Herrmann,J.Park,I.Henins,“Materials
    Processing using an Atmospheric-Pressure Plasma Jet”,Physics
    Division Progress Report ,1999–2000
    [30]陳敏慧,”平板形大氣電漿束之特性分析”國立清華大學物理系
    碩士班物理組 ,2006
    [31]http://ssttpro.acesuppliers.com/semiconductor/Magazine_DetailsI
    ndex_Id_1281.html
    [32]S.E.Babayan,J.Y.Jeong,V.J.Tu,J.Parz,G.S.Selwyn,R.F.Hicks“
    Deposition of silicon dioxide films with an atmospheric-pressure
    plasma jet”, Plasma Sources Science and Technology,
    .Printed in the UK,Vol.7,No.3,pp.286–288,1998
    [33]邱士峰“低表面能材料於超疏水表面製備與奈米壓印微影技術
    之應用“國立中央大學化學工程與材料工程研究所,2005
    [34]http://memo.cgu.edu.tw/hsin-chun/
    [35]精密量測 范光照 張郭益 高立圖書有限公司總經銷科技書局
    [36]http://zh.wikipedia.org/zh-tw/SEM
    [37]http://elearning.stut.edu.tw/caster/3/no6/6-1.htm

    無法下載圖示 全文公開日期 2015/08/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE