簡易檢索 / 詳目顯示

研究生: 胡展祥
Zhan-Xiang Hu
論文名稱: 氣旋式混料與螺桿式混煉基於射出成型產品品質表現與製程能力比較
Comparison of injection molding quality performance and process capability by cyclone mixing and screw mixing
指導教授: 黃昌群
Chang-Chiun Huang
口試委員: 湯燦泰
Tsann-Tay Tang
郭中豐
Chung-Feng Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 135
中文關鍵詞: 聚丙烯二氧化矽氣旋式混料螺桿式混煉射出成型田口法主成分分析法製程能力指標
外文關鍵詞: Polypropylene, Silicon Dioxide, Cyclonic Process, Screw Process, Injection Molding, Taguchi Method, Principal Component Analysis, Process Capability Index
相關次數: 點閱:257下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的為了解氣旋式混料與螺桿式混煉對於射出成型品質表現與製程能力分析進行研究,檢驗所提出之氣旋式混料方法對於高分子材料之機械性質表現是否能達到螺桿式混煉機械性質表現,進而節省時間與空間成本。本研究採用材料聚丙烯(Polypropylene, PP)與球形二氧化矽粉體(Silicon Dioxide, SiO2)透過熱重損失分析TGA、熱示差分析DSC找出適當加工熱性質,選擇適當因子與水準值搭配田口直交表,並利用射出成型機製作樣本試片,試片分別測試拉伸、硬度與衝擊機械性質,經由訊號雜訊比與變異數分析找出顯著因子,求得單品質最佳參數組合,評估實驗之再現性程度,再藉由主成分分析法針對各項品質權重性評估,找出多品質最佳參數組合與綜合得分評比,最後利用製程能力Cpm指標搭配多品質製程能力分析圖MPCAC,比較氣旋式混料與螺桿式混煉間製程良率的差異與優劣,評估產品機械性質表現,提供氣旋式混料與螺桿式混煉對於射出成型品質表現完善的資訊。


    The purpose of this thesis is to compare injection molding quality performance with process capability in cyclone mixing and screw mixing. According to adjustable parameters of the injection molder and SiO2 content, we selected the appropriate factor and suitable level value to match the Taguchi's orthogonal arrays after using TGA and DSC analysis to find the appropriate processing thermal properties. In the beginning, we discussed the significant process parameters which identified based on the analysis of variance (ANOVA) and F-test to find out the best quality parameter combination. After that, we found optimal parameters of comprehensive quality by using Taguchi method with Principal Components Analysis (PCA). Finally, we used the Process Capability Index (PCI) to analyze process capabilities between cyclonic mixing and twin-screw mixing. The Multi-Process Capability Analysis Chart (MPCAC) with Cpm index was briefly used to compare the different processes yield between two processes.
    As the conclusion, we can be very effective to find out multi-quality parameters by using Taguchi method and PCA, and then we used MPCAC/Cpm which can clearly identify the performance of the product's mechanical properties merits and demerits. In this thesis, we provide entire information about the cyclone mixing process and screw mixing process.

    摘要 ................................ ................................ ................................ ............. I ABSTRACT ................................ ................................ ............................. II 誌謝 ................................ ................................ ................................ .......... III 目錄 ................................ ................................ ................................ .......... IV 圖目錄 ................................ ................................ ................................ ... VIII 表目錄 ................................ ................................ ................................ ........ X 第 1章 緒論 ................................ ................................ ............................... 1 1.1 前言 ................................ ................................ .............................. 1 1.2 研究動機與目的 研究動機與目的 ................................ ................................ ......... 2 1.3 文獻回顧 ................................ ................................ ..................... 4 1.3.1 氣旋式混料 ................................ ................................ ...... 4 1.3.2 參數最佳化系統 參數最佳化系統 ................................ .............................. 6 1.3.3 製程能力指標 ................................ ................................ .. 9 1.4 研究流程 ................................ ................................ ................... 11 第 2章 實驗材料與儀器介紹 ................................ ................................ 12 2.1 實驗材料介紹 實驗材料介紹 ................................ ................................ ........... 12 2.1.1 聚丙烯 ................................ ................................ ............ 12 2.1.2 球形二氧化矽粉體 球形二氧化矽粉體 ................................ ........................ 13 V 2.2 氣旋式混料機 氣旋式混料機 ................................ ................................ ........... 14 2.3 雙螺桿混煉機 雙螺桿混煉機 ................................ ................................ ........... 17 2.4 材料分析 ................................ ................................ ................... 19 2.4.1 熱重損失分析儀 熱重損失分析儀 ................................ ............................ 19 2.4.2 熱示差分析儀 ................................ ................................ 20 2.4.3 塑膠射出成型機 塑膠射出成型機 ................................ ............................ 21 2.4.4 落地型動態材料試 落地型動態材料試 驗機 ................................ ................ 23 2.4.5 蕭氏硬度計 ................................ ................................ .... 25 2.4.6 Izod衝擊試驗機 ................................ ............................ 27 第 3章 研究理論 ................................ ................................ .................... 30 3.1 田口品質工程 田口品質工程 ................................ ................................ ........... 30 3.1.1 品質損失函數 ................................ ................................ 31 3.1.2 信號雜訊比 ................................ ................................ .... 32 3.1.3 直交表 ................................ ................................ ............ 33 3.1.4 變異數分析 ................................ ................................ .... 36 3.1.5 信賴區間與確認實驗 信賴區間與確認實驗 ................................ .................... 40 3.1.6 田口實驗設計步驟 田口實驗設計步驟 ................................ ........................ 42 3.2 多品質製程最佳化理論 多品質製程最佳化理論 多品質製程最佳化理論 ................................ ........................... 43 3.2.1 主成分析法 ................................ ................................ 43 VI 3.2.2 主成分析理論 主成分析理論 ................................ ............................ 44 3.2.3 主成分析計算 主成分析計算 ................................ ............................ 46 3.3 製程能力指標介紹 製程能力指標介紹 製程能力指標介紹 ................................ ................................ ... 51 3.3.1 單邊規格製程能力指標 ................................ ................ 52 3.3.2 雙邊規格製程能力指標 ................................ ................ 53 3.4 六標準差介紹 六標準差介紹 ................................ ................................ ........... 55 3.5 多品質製程能力評估模式 多品質製程能力評估模式 多品質製程能力評估模式 ................................ ....................... 57 3.5.1 整合製程能力評估模式 整合製程能力評估模式 ................................ ................ 57 3.5.2 指標 Cpm與製程良率 P關係 ................................ ........ 58 3.5.3 指標 Cpm與重要品質特性 Cpmj指標之關係 ................ 59 3.6 多品質特性製程能力分析圖 多品質特性製程能力分析圖 多品質特性製程能力分析圖 MPCAC ................................ .... 60 第 4章 實驗結果與分析 ................................ ................................ ........ 65 4.1 材料分析 ................................ ................................ ................... 66 4.1.1 聚丙烯 ................................ ................................ ............ 67 4.1.2 球形二氧化矽粉體 球形二氧化矽粉體 ................................ ........................ 68 4.1.3 規劃直交表 ................................ ................................ .... 70 4.1.4 試片製作 ................................ ................................ ........ 71 4.2 單品質最佳實驗結果 單品質最佳實驗結果 單品質最佳實驗結果 ................................ ............................... 77 4.2.1 機械性質變異數分析 機械性質變異數分析 ................................ .................... 79 VII 4.2.2 田口法實驗結 果分析 ................................ .................... 83 4.3 多品質參數最佳化系統 多品質參數最佳化系統 多品質參數最佳化系統 ................................ ........................... 85 4.3.1 主成分析之最佳化參數 主成分析之最佳化參數 主成分析之最佳化參數 ................................ ............ 85 4.3.2 製程參數 最佳化實驗結果 最佳化實驗結果 最佳化實驗結果 ................................ ............ 88 4.3.3 最佳化參數實驗結果分析 最佳化參數實驗結果分析 最佳化參數實驗結果分析 ................................ ............ 90 4.4 製程能力績效分析 製程能力績效分析 製程能力績效分析 ................................ ................................ ... 94 4.4.1 多品質製程能力分析圖 多品質製程能力分析圖 ................................ ................ 96 4.4.2 多品質製程能 力分析 ................................ .................... 97 4.5 製程效益分析 製程效益分析 ................................ ................................ ........... 99 4.5.1 混合方式統整 混合方式統整 ................................ ................................ 99 4.5.2 品質表現與製程能力優點成效 品質表現與製程能力優點成效 品質表現與製程能力優點成效 品質表現與製程能力優點成效 品質表現與製程能力優點成效 .............................. 100 第 5章 結論 與建議 ................................ ................................ .............. 103 5.1 結論 ................................ ................................ .......................... 103 5.2 建議 ................................ ................................ .......................... 105 參考文獻 ................................ ................................ ................................ . 107 附錄 A:各項單品質最佳參數實驗量測值 :各項單品質最佳參數實驗量測值 :各項單品質最佳參數實驗量測值 :各項單品質最佳參數實驗量測值 ................................ ........ 114 附錄 B:品質數據管制圖 ................................ ................................ ..... 117 作者簡介 ................................ ................................ ................................ . 121

    [1]
    P. O. Tawiah, P. Y. Andoh, A. Agyei-Agyemang and F. Nyarko, “Characterization of Recycled Plastics for Structural Applications”, International Journal of Science and Technology, Vol. 5, pp. 259-267 (2016).
    [2]
    Y. Kosaki, T. Hirai, Y. Yamanaka and K. Takeshima, “Investigation on Dust Collection and Particle Classification Performance of Cyclones by Airflow Control for Design of Cyclones”, Powder Technology, Vol. 277, pp. 22-35 (2015).
    [3]
    Y. Kosaki, Y. Yamanaka and K. Takeshima, “Investigative Study on Cyclone Design, 1st Report, Investigation of Flow Field Inside The Cyclone by Fluid Analysis”, Jpn. Soc. Des. Eng., Vol. 49, pp. 589-596 (2014).
    [4]
    田民波,材料學概論,五南圖書出版股份有限公司(2015)。
    [5]
    J. C. Kim and K. W. Lee, “Experimental Study of Particle Collection by Small Cyclones”. Aerosol Science and Technology, Vol. 12, pp. 1003-1015 (1990).
    [6]
    T. Fuyuki, Y. Yamada and K. Iinoya, “The Performances of Several Types of Cyclons”, Journal of the Society of Powder Technology, Japan, Vol. 30, pp. 490-495 (1993).
    [7]
    H. Yoshida, K. Fukui, K. Yoshida and E. Shinoda, “Particle Separation by Iinoya's Type Gas Cyclone”, Powder Technology, Vol. 118, pp. 16-23 (2001).
    [8]
    H. Yoshida, Y. Inada, K. Fukui and T. Yamamoto, “Improvement of Gas-Cyclone Performance by Use of Local Fluid Flow Control Method”, Powder Technology, Vol.193, pp. 6-14 (2009).
    [9]
    H. Yoshida, Y. Nishimura, K. Fukui and T. Yamamoto, “Effect of Apex Cone Shape on Fine Particle Classification of Gas-Cyclone”, Powder Technology, Vol. 204, pp. 54-62 (2010).
    [10]
    I. Khazaee, “Numerical Investigation of the Effect of Number and Shape of Inlet of Cyclone and Particle Size on Particle Separation”, Heat and Mass Transfer, Vol. 53, pp. 2009-2016 (2017).
    [11]
    Y. Kosaki and S. Chono, “Time Characteristics of Dust Collection and Particle Classification Performance of a Cyclone”, Powder Technology, Vol. 305, pp. 602-608 (2017).
    [12]
    R. Meier, K. P. Moll, M. Krumme and P. Kleinebudde, “Impact of Fill-Level in Twin-Screw Granulation on Critical Quality Attributes of Granules and Tablets”, European Journal of Pharmaceutics and Biopharmaceutics, Vol. 115, pp. 102-112 (2017).
    [13]
    J. P. Ibar, “Control of Poperties by Melt Vibration Technology : A Review”, Polymer Engineering and Science, Vol. 38, pp. 1-20 (1998).
    [14]
    M. S. Chris, A. D. Alan and F. George, “Multiobjective Optimization of A Plastic Injection Molding Process”, IEEE Transactions on Control Systems Technology, Vol. 2, pp. 157-168 (1994).
    [15]
    C. Zhao and F. Gao, “Melt Temperature Profile Prediction for Thermoplastic Injection Molding”, Polymer Engineering and Science, Vol. 39, pp. 1787-1801 (1999).
    [16]
    C. F. J. Kuo, C. C. Huang, C. H. Ting, M. Y. Dong, W. L. Lan, “Research and Development of A Composite with Transparent Polypropene Fiber Part I: A Study of Combining The Taguchi Method with The Analytic Hierarchy Process for Masterbatch Modification and Toughening to Enhance Characteristics”,
    Textile Research Journal, DOI:10.1177/0040517517748491 (2017).
    [17]
    Y. Nakamura, S. Okabe and T. Iida, “Effects of Particle Shape, Size and Interfacial Adhesion on The Fracture Strength of Silica-Filled Epoxy Resin”, Polymers and Polymer Composites, Vol. 7, pp. 177-186 (1999).
    [18]
    W. Wu, M. H. Wagner and Z. Xu, “Surface Treatment Mechanism of Nano-SiO2 and the Properties of PP/Nano-SiO2 Composite Materials”, Colloid and Polymer Science, Vol. 281, pp. 550-555 (2003).
    [19]
    Y. P. Zheng, Y. Zheng and R. C. Ning, “Effects of Nanoparticles SiO2 on the Performance of Nanocomposites”, Materials Letters, Vol. 57, pp. 2940-2944 (2003).
    [20]
    W. Gong, K. J. Liu, C. Zhang, J. H. Zhu and L. He, “Foaming Behavior and Mechanical Properties of Microcellular PP/SiO2 Composites”, International Polymer Processing, Vol. 27, pp. 181-186 (2012).
    [21]
    Y. Liang, S. Wen, Y. Renc and L. Liu, “Fabrication of Nanoprotrusion Surface Structured Silica Nanofibers for The Improvement of The Toughening of Polypropylene”, RSC Advances, Vol. 5, pp. 31547–31553 (2015).
    [22]
    M. Mastali and A. Dalvand, “The Impact Resistance and Mechanical Properties of Fiber Reinforced Self-Compacting Concrete (SCC) Containing Nano-SiO2 and Silica Fume”, European Journal of Environmental and Civil Engineering, Vol. 22, pp. 1-27 (2018).
    [23]
    T. V. Pinto, D. M. Fernandes, A. Guedes, N. Cardoso, N. F. Durães, C. Silva, C. Pereira and C. Freirea, “Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technology”, Chemical Engineering Journal, Vol 350, pp. 856-866 (2018)
    [24]
    G. Taguchi, “Introduction to Quality Engineering: Designing Quality into Products and Processes”, Tokyo : Asian Productivity Organization (1986).
    [25]
    P. J. Ross, “Taguchi Techniques for Quality Engineering : Loss Function, Orthogonal Experiments, Parameter and Tolerance Design”, New York: McGraw-Hill (1988).
    [26]
    H. C. Liao, “Multi-Response Optimization Using Weighted Principal Component”, The International Journal of Advanced Manufacturing Technology, Vol. 27, pp 720-725 (2007).
    [27]
    K. Pearson, “LIII. On Lines and Planes of Closest Fit to Systems of Points in Space”, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Vol. 2, pp. 559-572 (2010).
    [28]
    C. T. Su and L. I. Tong, “Multi-Response Robust Design By Principal Component Analysis”, Total Quality Management, Vol. 8, pp. 409-416 (1997).
    [29]
    B. Venkatanarayana, C. Ratnam, R. U. Rao and K. PrasadaRao, “Multi-Response Optimization of DI Diesel Engine Performance Parameters Using Karanja Methyl Ester by Applying Taguchi-Based Principal Component Analysis”, Biofuels, Vol. 8, pp. 49-57 (2017).
    [30]
    S. B. Sutono, S. H. Abdul-Rashid, Z. Taha, Subagyo and H. Aoyama, “Integration of Grey-Based Taguchi Method and Principal Component Analysis for Multi-Response Decision-Making in Kansei Engineering”, European Journal of Industrial Engineering, Vol. 11, pp. 205-227 (2017).
    [31]
    楊素芬,品質管理,華泰文化事業股份有限公司(2006)。
    [32]
    D. R. Bothe, “Composite Capability Index for Multiple Product Characteristics”, Quality Engineering , Vol. 12, pp. 253-258 (2000).
    [33]
    J. M. Juran, “Juran's Quality Control Handbook”, New York : McGraw-Hill (1951).
    [34]
    V. E. Kane, “Process Capability indices.” Journal of Quality Technology, Vol. 18, pp 41-52 (1986).
    [35]
    R. A Boyles, “The Taguchi Capability Index”, Journal of Quality Technology”, Vol. 23, pp. 17-26 (1991).
    [36]
    L. K. Chan, S. W. Cheng and F. A. Spiring, “A New Measure of Process Capability: Cpm”, Journal of Quality Technology, Vol. 20, pp. 162-175 (1988).
    [37]
    K. S. Chen, M. L. Huang and R. K. Li, “Process Capability Analysis for an Entire Product”, International Journal of Production Research, Vol. 39, pp. 4077-4087 (2001).
    [38]
    M. L. Huang and K. S. Chen , “Capability Analysis for a Multi-Process Product with Bilateral Specifications”, The International Journal of Advanced Manufacturing Technology, Vol. 21, pp. 801-806 (2003).
    [39]
    T. C. Chang, K. J. Wang, K. S. Chen, “Sputtering Process Assessment of ITO Film for Multiple Quality Characteristics With One-Sided and Two-Sided Specifications”, Journal of Testing and Evaluation, Vol. 42, pp. 196-203 (2014).
    [40]
    H. T. Chen, K. S. Chen, “Assessing The Assembly Quality of A T-Bar Ceiling Suspension by Using an Advanced Multi-Process Performance Analysis Chart with Asymmetric Tolerance”, European Journal of Industrial Engineering, Vol. 10, pp. 264-283 (2016).
    [41]
    K. S. Chen, C. H. Wang and Y. Y. Wang, “Applying a Six Sigma MAIC Process to Improve the Quality of Lens Camera Production”, Key Engineering Materials, Vol. 500, pp. 301-310 (2012).
    [42]
    F. K. Wang, “A General Procedure for Process Yield with Multiple Characteristics”, Vol. 23 , pp. 503-508 (2010).
    [43]
    K. Zdiri, A. Elamri, M. Hamdaoui, O. Harzallah, N. Khenoussi and J. Brendlé, “Reinforcement of Recycled PP Polymers by Nanoparticles Incorporation”, Green Chemistry Letters and Reviews, Vol. 11, pp. 296-311 (2018).
    [44]
    A. Matta, I. Katada, J. Kawazoe, P. Chammingkwan, M. Terano and Toshiaki Taniike, “Stabilization of Polypropylene-Based Materials via Molecular Retention with Hyperbranched Polymer”, Polymer Degradation and Stability, Vol. 142, , pp. 50-54 (2017).
    [45]
    H. H. Harman. “Modern Factor Analysis”, Chicago: University of Chicago Press (1976).
    [46]
    B. Wyper and A. Harrison, “Deployment of Six Sigma Methodology in Human Resource Function : A Case Study”. Total Quality Management, Vol.11, pp. 720-727 (2010).
    [47]
    M. M. Bunce, L. Wang and B. Bidanda, “Leveraging Six Sigma with Industrial Engineering Tools in Crateless Retort Production”, International Journal of Production Research, Vol. 46, pp. 6701–6719 (2008).
    [48]
    C. H. Han and Y. H. Lee, “Intelligent Integrated Plant Operation System for Six Sigma”, Annual Reviews in Control, Vol. 26, pp. 27-43 (2002).
    [49]
    K. S. Chen, C. H. Wang and H. T. Chen, “A MAIC Approach to TFT-LCD Panel Quality Improvement”, Microelectronics Reliability, Vol. 46, pp. 1189-1198 (2006).
    [50]
    C. C. Wang, K. S. Chen, C. H. Wang and P. H. Chang, “Application of 6-Sigma Design System to Developing an Improvement Model for Multi-Process Multi-Characteristic Product Quality”, Journal of Engineering Manufacture, Vol. 225, pp. 1205-1216 (2011).
    [51]
    J. P. Chen and K. S. Chen, “Comparison of Two Process Capabilities by using Indices Cpm : An Application to a Color STN Display”, International Journal of Quality & Reliability Management, Vol. 21, pp. 90-101 (2004).
    [52]
    李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司,行政院新聞局局版臺業字第1423號(2008)。
    [53]
    K. S. Chen, W. L. Pearn and P. C. Lin, “Capability Measures for Processes with Multiple Characteristics”, Quality and Reliability Engineering International, Vol. 19, pp. 101-110 (2003).
    [54]
    M. Deleryd and K. Vännman, “Process Capability Plots-A Quality Improvement Tool”, Quality and Reliability Engineering International, Vol. 15, pp. 213-227 (1999).
    [55]
    G. P. Syrcos, “Die Casting Process Optimization Using Taguchi Method”, Journal of Materials Processing Technology, Vol. 135, pp. 68-74 (2003).
    [56]
    T. Luo, C. Wu, L. Duan, “Fishbone Diagram and Risk Matrix Analysis Method and Its Application in Safety Assessment of Natural Gas Spherical Tank”, Journal of Cleaner Production, Vol. 174, pp. 296-304 (2018).
    [57]
    W. P. Sung, K. S. Chen and C. G. Go, “Analytical Method of Process Capability for Steel”, International Journal of Advanced Manufacturing Technology, Vol. 20, pp. 480-486 (2002).
    [58]
    W. W. Chien, W. L. Pearn and Samuel Kotz, “An Overview of Theory and Practice on Process Capability Indices for Quality Assurance”, International Journal of Production Economics, Vol. 117, pp. 338-359 (2009).
    [59]
    H. F. Kaiser, “An Index of Factorial Simplicity”, Psychometrika, Vol. 39, pp. 31-36 (1974).
    [60]
    W. L. Pearn, S. Kotz and N. L. Johnson, “Distribution and Inferential Properties of Process Capability Indices”, Journal of Quality Technology, Vol. 24, pp. 216-231 (1992).
    [61]
    A. U. Kudla and O. R. Brook, “Quality and Efficiency Improvement Tools for Every Radiologist”, Academic Radiology, Vol. 25, pp. 757-766 (2018).

    QR CODE