簡易檢索 / 詳目顯示

研究生: 張智韋
Chih-Wei Chang
論文名稱: 反壓控制超臨界流體微細發泡射出成形之氣泡成長數值模擬
Numerical Prediction of Bubble Growth in the Microcellular Injection Molding Process Assisted with Counter Pressure Filling of Gas
指導教授: 趙修武
Shiu-Wu Chau
口試委員: 黃明賢
Ming-Shyan Huang
周文祥
Wern-Shiarng Jou
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 89
中文關鍵詞: 氣泡尺寸發泡成形超臨界流體氣體反壓數值模擬
外文關鍵詞: Bubble Size, Microcellular Injection Molding Process, Supercritical Fluid, Counter Pressure of Gas, Numerical Simulation
相關次數: 點閱:278下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用計算流體力學方法,建立超臨界流體微細發泡射出成形氣泡成長之數值模型,並利用不同製程參數條件進行超臨界流體微細發泡射出成形之氣泡成長模擬分析,以了解在超臨界流體微細發泡射出成形中各參數對氣泡尺寸大小之影響。本研究使用連續、動量及能量方程式描述模穴內的流場,並利用波前方程式得知塑料在模穴內波前位置,以及使用氣泡成長方程式獲得氣泡尺寸大小。本文使用有限體積法離散流場統御方程式,並以流體體積法計算熔膠之波前分佈,同時以Cross-WLF黏度修正模型來描述熔膠在充填過程的非牛頓流體流變特性,氣泡成長方程式使用Amon和Denson提出的氣泡模型描述氣泡成長過程。由本研究所建立的數值模型與相關實驗結果比較,具有定性與定量上的一致性。研究結果顯示氣泡大小隨著持壓時間增加而減小,隨著反壓壓力降低而升高,隨著超臨界流體含量越高而減小,當量測點越接近壁面時,氣泡大小越小。反壓壓力為150 bar時,低持壓時間(tp < 5 s)時,計算結果與實驗結果有較高的一致性,此時在實驗參數點氣泡大小約為25 μm。


    This study proposes a numerical model to simulate the bubble growth in the microcellular injection molding process assisted with counter pressure filling of gas, where various conditions is employed to investigate the effects of processing parameters on the bubble size. The microcellular injection molding process is described by the continuity equation, the momentum equation, the energy equation, and the front transport equation. The govern equations are discretized by a finite volume approach, while the volume-of-fluid method is employed to calculate the location of melt front. The non-Newtonian rheological behavior of polymer is described by the modified Cross-WLF model. The proposed numerical model is proven to give both qualitative and quantitative agreement with corresponding experiments. The results of this study reveal that the size of bubble decreases with the holding time and the weight percent of supercritical fluid, as well as the counter pressure. The size of bubble grows as the location of bubble moves away from the mold surface. Better agreement between numerical simulations and experimental results is found for the case with counter pressure of 150 bar, where the bubble size is about 25 μm at the reference point in the experiment

    符號表 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 超臨界微細發泡射出成形技術 3 1-3 文獻回顧 6 1-4 論文架構 12 第二章 數學模型與數值方法 13 2-1 統御方程式 13 2-2 氣泡成長方程式 16 2-3 塑膠材料特性模型 18 2-4 離散方法 22 第三章 計算模型與參數 25 3-1 成品幾何尺寸 25 3-2 研究背景與計算參數 27 3-3 邊界條件 29 3-4 網格與其獨立性分析 31 3-5 超臨界流體微細發泡射出成形結果 33 第四章 製程參數對於氣泡尺寸之影響 39 4-1 反壓壓力對於泡尺寸之影響 39 4-2 持壓時間對於氣泡尺寸之影響 51 4-3 超臨界流體含量對於氣泡尺寸之影響 64 4-4 不同量測位置對於氣泡尺寸之影響 73 第五章 結論 83 參考文獻 84

    [1] 王昭欽,“發泡之原理及其在押出成型加工之應用”,工業技術人才培訓計畫講義,財團法人塑發中心,2002。
    [2] J.E. Martini, F.A. Waldman and N.P. Suh, “The Production and Analysis of Microcellular Thermoplastic Foam,” SPE ANTEC Technical Papers, Vol. 28, pp. 674, 1982.
    [3] J.S. Colton and N.P. Suh, “Nucleation of Microcellular Foam: Theory and Practice,” Polymer Engineering and Science, Vol. 27, No. 7, pp. 500, 1982.
    [4] C.B. Park and N.P. Suh, “Extrusion of Microcellular Polymers Using a Rapid Pressure Drop Device,” SPE ANTEC Technical Papers, Vol. 39, pp. 1818-1822, 1993.
    [5] M. Wong, C.H. Chang, and W.C. Liang, Relationship between Foam Density and Viscoelastic Property of Polystyrene,” PPS-2002 Conference, No. 4-8, pp. 66, 2002.
    [6] K.T. Okamoto, “Microcellular Processing,” Hanser Gardner Publishers, 2003.
    [7] D.I. Collias, and D.G. Baird, and J.M.R. Borggreve, “Impact Toughening of Polycarbonate by Microcellular Foaming,” Polymer, Vol. 25, pp. 3978, 1994.
    [8] D.I. Collias, and D.G. Baird, “Tensile Toughness of Microcellular Foams of Polystyrene, Styrene-acrylonitrile Copolymer, and Polycarbonate, and the Effect of Dissolved Gas on the Tensile Toughness of The Same Polymer Matrices and Microcellular Foams,” Polymer Engineering and Science, Vol. 35, pp. 1167, 1995.
    [9] L.M. Matuana, C.B. Park, and J.J. Balatinecz, “Structures and Mechanical Properties of Microcellular Foamed Polyvinyl Chloride,” Cellular Polymer, Vol. 17, pp. 1, 1998.
    [10] C. Wang, K. Cox, and G.A. Campbell, “Microcellular Foam of Polypropylene Containing Low Glass Transition Rubber Particles in an Injection Molding Process,” SPE ANTEC Technical Papers, pp. 406, 1995.
    [11] J.R. Royer, Y.J. Gay, J.M. Desimone, and S.A. Khan, “High-Pressure Rheology of Polystyrene Milts Plasticized with CO2: Experimental Measurement and Predictive Scaling Relationships,” Journal of Polymer Science, Part B: Polymer Physics, Vol. 8, pp. 3168, 2000.
    [12] M. Walter and C. Axel, “Increasing the Surface Quality of Foamed Injection Mold Part,” SPE ANTEC Technical Papers, 2006.
    [13] J. Xu, “Methods to the Smooth Surface of Microcellular Foam in Injection Molding,” SPE ANTEC Technical Papers, 2007.
    [14] S. Semerdjiev, “Thermoplastische Strukturschaumstoffe,” VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig, 1980.
    [15] M. Ohshima, “A New Technique of Supercritical CO2-Asisted Surface Coating Injection Molding,” Department of Chemical Engineering, Kyoto University, pp. 615-8510, 2004.
    [16] A.K. Bledzki, H. Kirschling, G. Steinbichler, and P. Egger, “Microcellular Moulding with Gas Pressure Using Physical Blowing Agent,” Trans Tech Publication, pp. 257-260, 2005.
    [17] W. Michaeli and A. Cramer, “Increasing the Feasible Bonding Strength in Micro Assembly Injection Molding Using Surface Modifications,” SPE ANTEC Technology Papers, pp. 1290-1294, 2006.
    [18] S.C. Chen, M.H. Chung, Y.W. Lin, P.S. Hsu, S.S. Hwang, and P.M. Hsu, “Rheological Characterization of Polystyrene Melts Dissolved with Supercritical Nitrogen Fluid During Microcellular Injection Moulding,” E-Polymers, No. 128, 2010.
    [19] J.D. Yoon, S. K. Hong, J.H. Kim, and S.W. Cha, “A mold Surface Treatment for Improving Surface Finish of Injection Molded Microcellular Parts,” Cellular Polymers, Vol. 23, pp. 39-47, 2004.
    [20] S.W. Cha and J.D. Yoon, “The Relationship of Mold Temperatures and Swirl Marks on the Surface of Microcellular Plastics,” Polymer-Plastics Technology and Engineering, Vol. 44, pp. 795-803, 2005.
    [21] J.J. Lee and L.S. Turng, “Improvement in Surface Quality of Microcellular Injection Molded Parts,” ANTEC2009, University of Wisconsin-Madison, Madison, WI, 2009.
    [22] S.C. Chen, H.M. Li, S.S. Hwang and H.H. Wang, “Passive Mold Temperature Control by a Hybrid Filming-Microcellular Injection molding Processing,” Journal of International Communications in Heat and Mass Transfer, Vol. 37, pp. 501-505, 2010
    [23] H.L. Chen, R.D. Chien, and S.C. Chen, “Using Thermally Insulated Polymer Film for Mold Temperature Control to Improve Surface Quality of Microcellular Injection Molded Parts,” Journal of International Communications in Heat and Mass Transfer, Vol. 35, pp. 991-994, 2008.
    [24] L.S. Turng and H. Kharbas, “Development of a Hybrid Solid-Microcellular Co-Injection Molding Process,” International Polymer Processing, Vo. 19, pp. 77-86, 2004.
    [25] “小野株式會社技術報告,” ONO SANGYO Corp., 2004.
    [26] S.C. Chen, Y.W. Lin, R.D. Chien, and H.M. Li, “Variable Mold Temperature to Improve Surface Quality of Microcellular Injection Molded Using Parts Heating Technology,” Advances in Polymer Technology, Vol. 27, pp. 224-232, 2008.
    [27] 許評順,“模內氣體反壓與動態模溫機制應用於超臨界微細發泡射出成型發泡控制與表面品質影響之研究”,中原大學機械工程研究所博士論文,2011。
    [28] M. Amon and C.D. Denson, “A Study of the Dynamics of Foam Growth: Analysis of the Growth of Closely Spaced Spherical Bubbles,” Polymer Engineering and Science, Vol. 24, No. 13, pp. 1026-1034, 1984.
    [29] M. Amon and C.D. Denson, “A Study of the Dynamics of Foam Growth: Simplified Analysis and Experimental Results for Bulk Density in Structural Foam Molding,” Polymer Engineering and Science, Vol. 26, No. 3, pp. 255-267, 1986.
    [30] A. Arefmanesh, S.G. Advani, and E.E. Michaelides, “A Parametric Study of Bubble Growth during Low Pressure Foam Molding Process,” Polymer Engineering and Science, Vol. 30, pp. 1330-1338, 1990.
    [31] A. Arefmanesh and S.G. Advani, “Diffusion-Induced Growth of a Gas Bubble in a Viscoelastic Fluid,” Rheologica-Acta, Vol. 30, pp. 274-283, 1991.
    [32] A. Arefmanesh, S.G. Advani, and E.E. Michaelides, “An Accurate Numerical Solution for Mass Diffusion-Induced Bubble Growth in Viscos Liquids Containing Limited Dissolved Gas,” Journal of International Communications in Heat and Mass Transfer, Vol. 35, No. 7, pp. 1711-1722, 1992.
    [33] A. Arefmanesh, and S.G. Advani, “Nonisothermal Bubble Growth in Polymeric Foams,” Polymer Engineering and Science, Vol. 35, pp. 252-260, 1995.
    [34] R. Zheng, P. Kennedy, J. Xu, and L. Kishbaugh, “Simulation of the MuCellR Process in Injection Molding,” SPE ANTEC Proceedings, 2002.
    [35] S. Han, R. Zheng, P. Kennedy, J. Xu, and L. Kishbaugh, “Numerical Analysis of Microcellular Injection Molding,” SPE ANTEC Proceedings, pp. 696-700, 2003.
    [36] J.P. Hernandez, A. Chandra, A. Winardi, L.S. Turng, and T. Osswald, “Modeling Cell Nucleation during Microcellular Injection Molding,” SPE ANTEC, 2003.
    [37] A. Osorio, and L.S. Turng, “Mathematical Modeling and Numerical Simulation of Cell in Injection Molding of Microcellular Plastics,” Polymer Engineering and Science, Vol. 44, No. 12, pp. 2274-2287, 2004
    [38] A. Zhai, and Y. Xie, “A Numerical Simulation of Full-Shot Microcellular Injection Molding,” Journal of Polymer Engineering, Vol. 29, No. 7, pp. 441-453, 2009.
    [39] S.W. Chau, and Y.W. Lin, “Three-Dimensional Simulation of Melt Filling and Gas Penetration in Gas-Assisted Injection Molding Process Using a Finite Volume Formulation,” Journal of Polymer Engineering, Vol. 26, No. 5, pp. 431-450, 2006.
    [40] S.W. Chau, “Numerical Investigation of Free-Stream Rudder Characteristics Using a Multi-Block Finite Volume Method,” Ph.D Thesis, University of Hamburg, 1997.
    [41] T.R. Tuladhar, and M.R. Mackley, “Experimental Observations and Modeling Relating to Foaming and Bubble Growth From Pentane Loaded Polystyrene Melts,” Chemical Engineering Science, Vol. 59, pp. 5997-6014, 2004.
    [42] Moldflow Plastics Insight 2010, Moldflow Corporation, New York, 2010.
    [43] S.V. Patankar, “Numerical Heat Transfer and Fluid Flow,” Hemisphere Publishing, Washington, 1980.
    [44] C.M. Rhie, and W.L. Chow, “Numerical Study of The Turbulent Flow Past and Airfoil with Trailing Edge Separation,” AIAA Journal, Vol. 21, No. 11, pp. 1525-1532, 1983.
    [45] S. Muzaferija and M. Perić, “Computation of Free-Surface Flows Using Interface-Tracking and Interface Capturing Methods,” Chap. 2 in O. Mahrenholtz and M. Markiewicz (eds.),” Nonlinear Water Wave Interaction, Computational Mechanics Publications, WIT Press, Southampton, pp. 59-100, 1999.
    [46] L.F. Richardson, “The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations with an Application to the Stresses in a Masonry Dam,” Transaction of Royal Society London, Vol. 210, pp. 307-357, 1910.

    QR CODE