簡易檢索 / 詳目顯示

研究生: 李紹琮
SHAO-TSUNG LI
論文名稱: 材料微結構對微深引伸成形極限之影響
The influence of material micro structure to limitation of micro deep drawing process
指導教授: 黃佑民
You-Min Huang  
口試委員: 向四海
Su-Hai Hsiang  
陳聰嘉
tsung-chia chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 117
中文關鍵詞: 尺寸效應微引伸
外文關鍵詞: size effect, micro deep drawing
相關次數: 點閱:181下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬成形技術,其具有許多優點,例如生產效率高、成本低和產品
    可具複雜之幾何外形等。不過,當成品尺寸縮小之微米等級時,如摩
    擦、材料機械性質等對成形有影響之因素,其效應與巨觀下有所差異
    的現象將其稱之為尺寸效應。
    本文採用Prandtl-Reuss 塑流法則和Hill 的降伏條件,結合有限變
    形理論及Updated Lagrangian Formulation (ULF)的觀念建立一增量型
    彈塑性大變形三維有限元素分析程式,並應用四邊形四節點退化殼元
    素(Degenerated Shell Element)所推導之形狀函數偶合入剛性矩陣中,
    組成三維有限元素之分析模式,以及使用廣義min r 法處理板材成形
    時,元素降伏之判斷、最大容許應變增量、最大容許旋轉增量、料片
    與模具間節點之接觸或分離等問題,分析結果包括衝頭負荷與衝程關
    係圖、工件之應力分佈圖和工件之成形履歷。
    本研究之研究重點在於討論grain size effect 對於銅箔微深引伸之成
    形極限之影響,選取厚度0.1mm、0.075mm、0.05 mm 之銅箔並且利
    用熱處理方法改變試片內部之晶粒大小進行實驗,以求得晶粒尺寸的
    改變對銅箔微深引伸之成形極限之影響,以作為日後在微深引伸測試
    的參考。


    The metal forming technology, it has many merits, for example the
    production efficiency is high, the cost is low and the product may have
    the complex geometry contour and so on. However, when finished size
    reduction micron rank, like the friction, the material mechanical property
    and so on to form the influential factor, under its effect and the great view
    has the difference phenomenon to call it the size effect.
    A methodology of formulating an elasto-plastic three-dimensional finite
    element model, which is based on Prandtl-Reuss flow rule and Hill’s
    yield criterion respectively, combined with an updated Lagrangian
    formulation, is developed to simulation sheet metal forming processes.
    An extended r-min algorithm is proposed to formulate the boundary
    conditions, such as the yield of the elements, maximum allowable strain
    increment, maximum allowable rotation increment, maximum allowable
    equivalent stress increment, and tolerance for nodes getting out of contact
    with tool.
    The simulation results include relationships between punch load and
    punch stroke, distribution of the thickness, distribution of the stress, ,
    deformation history.
    Research of this research key lies in discusses grain size effect influence
    of forming of limit regarding the copper foil micro deep extension,
    copper foil of selection thickness 0.1mm, 0.075mm, the 0.05 mm, and
    carries on the experiment of grain size using the heat treatment method
    change preview interior, obtains the grain size the change to influence of
    forming of limit the copper foil micro deep drawing, by will take in the
    future in the micro deep drawing test reference

    摘要......................................................I ABSTRACT.................................................II 誌謝.....................................................IV 目錄......................................................V 符號索引.................................................IX 圖目錄...................................................XV 表目錄..................................................XXI 第一章 緒論...............................................1 1.1 前言..................................................1 1.2 文獻回顧..............................................2 1.2.1 材料之尺寸效應問題..................................4 1.2.2摩擦之尺寸效應問題...................................9 1.2.3 微引伸成形.........................................11 1.3 研究動機與目的.......................................16 1.4 論文架構.............................................17 第二章 基本理論..........................................18 2.1 前言.................................................18 2.2 基本假設.............................................20 2.3 有限變形之應變與應變率...............................20 2.4 有限變形之應力與應力率...............................21 2.5 有限變形之Updated Lagrangian Formulation.............28 2.6 材料之彈塑性構成關係式...............................29 第三章 金屬板材有限元素分析..............................35 3.1 簡介.................................................35 3.2 虛功原理的離散化.....................................38 3.3 退化殼元素(Degenerated Shell Element)................39 3.4 不同積分法則推導退化殼元素之剛性矩陣.................42 3.5 摩擦處理.............................................44 3.6 廣義rmin法之增量步驟的計算...........................48 3.7 三維曲度修正方程式...................................52 3.8 除荷之設定...........................................53 3.9 數值分析之流程.......................................54 第四章 實驗方法..........................................56 4.1 實驗材料之選取與實驗流程.............................56 4.2 熱處理與金相.........................................57 4.2.1 熱處理.............................................57 4.2.2 熱處理之設備與步驟.................................57 4.2.3 試片之金相實驗與步驟...............................58 4.2.4 平均晶粒大小之計算方法.............................59 4.2.5 熱處理結果.........................................59 4.3 拉伸試驗.............................................61 4.3.1拉伸試驗之硬體設備規格..............................61 4.3.2 拉伸試驗試片之設計與製作...........................63 4.3.3 拉伸試驗之實驗步驟.................................64 4.3.4 拉伸試驗之實驗結果.................................65 4.3 微引伸試驗...........................................71 4.3.1 模具設計與微衝壓設備介紹...........................71 4.3.2 微引伸實驗規劃.....................................74 4.3.3 實驗步驟...........................................76 第五章數值模擬與微引伸實驗結果...........................77 5.1 前言.................................................77 5.2微引伸成形製程之數值分析..............................77 5.2.1 模擬所使用之材料參數...............................79 5.2.2 微引伸成形製程模擬之邊界條件.......................79 5.3 數值分析與實驗結果之比較.............................82 5.3.1 圓杯微深引伸之衝頭負荷之比較.......................82 5.3.4工件應力分佈之比較..................................84 5.3.3 工件之成形履歷.....................................87 5.3.4 圓杯微深引伸成形製程之成形極限分析.................88 5.4 本章之結語..........................................101 第六章 結論.............................................102 6.1結論.................................................102 6.2未來研究之展望.......................................103 參考文獻................................................105 附錄一..................................................109 附錄二..................................................111 附錄三..................................................115 作者簡介................................................117

    [1]U.Engel, R.Eckstein,“Microforming - From basic research to its
    realization,”Journal of Materials Processing Technology,
    Vol.125-126,pp.35-44 (2002)
    [2]M.Geiger, F.Vollertsen, R.Kals,“Fundamentals on the Manufacturing
    of Sheet Metal Microparts,”CIRP Annals-Manufacturing Technology,
    Vol.45,pp.277-282 (1996)
    [3]F.Vollertsen, H.Schulze Niehoff, Z.Hu,“State of the art in micro
    forming,”International Journal of Machine Tools & Manufacture,
    Vol.46,pp.1172-1179 (2006)
    [4]A.Messner, U.Engel, R.Kals, F.Vollertsen,“Size Effect In The
    FE-Simulation of Micro-Forming Processes,”Journal of Materials
    Processing Technology, Vol.45,pp.371-376 (1994)
    [5]S.Miyazaki, H.Fujita, H.Hiraoka,“Effect of specimen size on the flow
    stress of polycrystalline Cu-AI alloy,”Scripta Metallurgica,
    Vol.13,pp.447-449 (1979)
    [6]T.A.Kals, R.Eckstein,“Miniaturization in Sheet Metal
    Working,”Journal of Materials Processing Technology,
    Vol.103,pp.95-101 (2000)
    [7]J.F.Michel, P.Picart,“Size effects on the constitutive behaviour for
    brass in sheet metal forming,”Journal of Materials Processing
    Technology, Vol.141,pp.439-446 (2003)
    [8]L.V.Raulea, A.M.Goijaerts, L.E.Govaert, F.P.T.Baaijens,“Size effects
    in the processing of thin metal sheets,”Journal of Materials Processing
    Technology, Vol.115,pp.44-48 (2001)
    [9]R.Eckstein, U.Engel,“Behavior of the grain structure in micro sheet
    metal working,”in Proceedings of the 8th International Conference on
    Metal Forming,pp.453-459 (2000)
    [10]Jenn-Terng Gau, Chris Principe, Jyhwen Wang,“An experimental
    study on size effects on flow stress and formability of aluminm and brass
    for microforming,”Journal of Materials Processing Technology,
    Vol.184,pp.42-46 (2007)
    [11]曾俊發,“尺寸效應於精微成形之基礎研究,”國立台灣大學 機械工程研究所 碩士論文,臺北(2003)
    [12]R.W.Aiwstrong,“On size effects in polycrystal plasticity,”Journal of
    the Mechanics and Physics of Solids, Vol.9,pp.196-199 (1961)
    [13]F.Vollertsen,“Metal Forming : Microparts,”Encyclopedia of
    materials : science and technology,pp.5424-5427 (2001)
    [14]Sasawat Mahabunphachai, Muammer Koc,“Investigation of size
    effects on material behavior of thin sheet metals using hydraulic bulge
    testing at micro/meso-scales,”International Journal of Machine Tools &
    Manufacture, Vol.48,pp.1014-1029 (2008)
    [15]N.Tiesler, U.Engel,“Microforming-Effects of miniaturization,”in
    Proceedings of the 8th International Conference on Metal
    Forming,pp.355-360 (2000)
    [16]毛慶中,“模具表面形貌對精微鍛粗之摩擦效應,”國立成功大學 機
    械工程研究所 碩士論文,臺南(2005)
    [17]Yasunori Saotome, Kaname Yasuda, Hiroshi Kaga,“Microdeep
    drawability of very thin sheet steels,”Journal of Materials Processing
    Technology, Vol.113,pp.641-647 (2001)
    [18]N.Witulski, H.Justinger, G.Hirt,“Validation Of FEM-Simulation For
    Micro Deep Drawing Process Modeling,”in AIP Conference
    Proceedings,Vol.712,pp.952-957 (2004)
    [19]F.Vollertsen, Z.Hu, H.S.Niehoff, C.Theiler,“State of the art in micro
    forming and investigations into micro deep drawing,”Journal of
    Materials Processing Technology, Vol.151,pp.70-79 (2004)
    [20]Y.Marumo, H.Saiki, L.Ruan,“Effect of sheet thickness on deep
    drawing of metal foils,”Journal of Achievements in Materials and
    Manufacturing Engineering, Vol.20,pp.479-482,2007
    [21]K.Manabe, T.Shimizu, H.Koyama, M.Yang, K.Ito,“Validation of FE
    simulation based on surface roughness model in micro-deep
    drawing,”Journal of Materials Processing Technology,
    Vol.204,pp.89-93,2008
    [22]Y. Yamada, N. Yoshimura and T. Sakurai, “Plastic Stress Strain
    Matrix and Its Application for the solution of Elastic-Plastic Problems by
    Finite Element Method”, Int. J. Sci, Vol.10, pp.343-354 (1968)
    [23]H. D. Hibbit, P. V. Marcal and J. R. Rice, “A Finite Element Formulation for Problem of Large Strain and Large Displacement”, Int. J.
    Solids Struct., Vol.6, pp.1069-1086(1970)
    [24] R. M. McMeeking and J. R. Rice, “Finite-Element Formulation for
    Problems of Large Elastic-Plastic Deformation”, Int. J. Solids
    Struct.,Vol.11, pp.601-616 (1975)
    [25] A. S. Wifi, “An Incremental Complete Solution of the Stretch
    Forming and Deep Drawing of a Circular Blank Using a Hemisphrical
    Punch”, Int. J. Mech. Sci.,Vol.10, pp.23-31 (1976)
    [26]A. Makinouchi, H. Ogawa and Y. Tozawa, “Simulation of Sheet
    Bending Processes by Elastic-Plastic Finite Element Method”, CIRP,
    Vol.38, pp.279-282 (1989)
    [27] M. Kawka and A. Makinouchi, “ Shell-element formulation in the
    static explicit FEM code for the simulation of sheet stamping ”, Journal
    of Materials Processing Technology, Vol.50, pp.105-115 (1995)
    [28] Y. M. Huang, Y. H. Lu and A. Makinouchi, “Elasto-Plastic
    Finite-Element Analysis of V-shape Sheet Bending,” Journal of
    Materials Processing Technology, Vol. 35, pp.129-150 (1992)
    [29] ASTM E345-99, "Test Method for Measuring the Electromagnetic
    Shielding Effectiveness of Planar Materials," American Society for
    Testing and Materials, American Society for Testing and Materials ,
    Annual book of ASTM standards.Vol3 pp111-111, West Conshohocken,
    PA,
    [30]江勝達,“微引伸成形加工條件對引伸比之影響,”國立高雄應用科
    技大學 機械工程研究所 碩士論文,高雄(2003)

    無法下載圖示 全文公開日期 2013/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE