簡易檢索 / 詳目顯示

研究生: 蘇佳佑
Jia-You Su
論文名稱: 輕油電系統應用之雙向多相電源轉換器
Multi-Phase Bi-directional Converter for MHEV System
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
劉益華
Yi-Hua Liu
張佑丞
Yu-Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 92
中文關鍵詞: 氮化鎵雙向直流-直流轉換器數位控制輕油電混合式動力車
外文關鍵詞: GaN, bidirectional DC-DC converter, digital control, mild hybrid vehicle
相關次數: 點閱:388下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球因空氣污染與能源問題,各國積極推動能源轉型策略,發展低碳、無汙染的潔淨能源。隨著車輛環保法規對於能源使用效率標準日益嚴苛,為符合高燃油效率與低二氧化碳排放的法規要求,新能源車成為國際發展趨勢。本論文旨在研製一2.5 kW雙向直流-直流轉換器模組,應用於48 V雙電池系統之輕油電混合式動力車(Mild Hybrid Electric Vehicle, MHEV)。採用氮化鎵(Gallium Nitride, GaN)功率元件,提高轉換效率及功率密度。電路架構選用四相交錯式同步升/降壓型轉換器,此架構簡單、可靠度高,具備電流漣波抵消及可實現雙向能量傳遞等優勢,且因多相式的架構,能有效降低導通損耗,適合大電流需求之應用。閉迴路控制以微控制器(Microcontroller, MCU)實現數位化之電壓、電流雙迴路控制及均流控制,可對電池實施定電流(Constant Current, CC)、定電壓(Constant Voltage, CV)之充放電策略。控制器設計與系統穩定度分析亦於文中進行探討。週邊功能結合CAN與UART通信界面,可透過個人電腦或是電子控制器(Electronic Control Unit, ECU)對系統進行監控。本論文使用PSIM模擬軟體驗證數位控制法及電路參數,並實作出一台基於氮化鎵之2.5 kW雙向直流-直流轉換器模組,峰值效率可達到97.5%。


    Due to air pollution and energy issues around the world, countries are actively promoting energy transition strategies and developing low-carbon, pollution-free clean energy. With the increasingly stringent standards for energy efficiency in vehicle environmental protection regula-tions, in order to meet the regulatory requirements for high fuel efficiency and low carbon dioxide emissions, alternative fuel vehicles have become a global development trend. This thesis aims to study and implement a bidi-rectional DC-DC converter module for 48 V dual-battery system Mild Hybrid Electric Vehicle (MHEV), using GaN devices to improve the con-version efficiency and power density. A four-phase interleaved synchro-nous buck-boost converter topology is adopted. The benefits of this to-pology are simple structure, high reliability, ripple cancellation and can re-alize bidirectional energy transfer. Owing to the multi-phase structure, the conduction loss can be effectively reduced, which is suitable for applica-tions with high current requirements. The closed-loop control is imple-mented by using microcontroller (MCU). To realize digital voltage and current dual-loop control and current balancing control, and can imple-ment constant current (CC) and constant voltage (CV) charging and dis-charging strategies for the battery. Controller design and stability analysis are discussed in this thesis. The system can be monitored by using person-al computer (PC) or electronic control unit (ECU) through CAN or UART communication interfaces. In this thesis, PSIM simulation software is used to verify the digital control method and circuit parameters. A GaN based 2.5 kW bidirectional DC-DC converter module is implemented and can achieve 97.5% peak efficiency.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖索引 vii 表索引 xi 第一章 緒論 1 1.1 研究動機與目的 1 1.2 章節大綱 2 第二章 雙向直流-直流轉換器模組 3 2.1 系統架構 3 2.2 同步升/降壓型轉換器 4 2.2.1 降壓模式 5 2.2.2 升壓模式 8 2.3 四相交錯式同步升/降壓型轉換器 11 2.3.1 降壓模式 12 2.3.2 升壓模式 22 2.3.3 電流漣波抵消 23 第三章 電路參數設計 26 3.1 寬能隙功率半導體元件 26 3.2 功率元件設計 28 3.2.1 電感設計 28 3.2.2 輸出電容設計 29 3.2.3 輸入電容設計 31 3.2.4 功率開關設計 32 3.2.5 ORing MOS設計 33 3.3 感測元件設計 34 3.3.1 電壓感測器 34 3.3.2 電流感測器 35 3.3.3 溫度感測器 36 3.4 數位控制器設計 37 3.4.1 均流控制 38 3.4.2 電流迴路控制器 39 3.4.3 降壓模式電壓迴路控制器 42 3.4.4 升壓模式電壓迴路控制器 45 第四章 韌體規劃 47 4.1 微控制器簡介 47 4.2 通信介面架構 47 4.2.1 串列通信介面 48 4.2.2 增強型控制器區域網路 48 4.3 數位控制規劃與實現 49 4.3.1 系統初始化 49 4.3.2 CPU中斷副程式流程規劃 50 4.3.3 CLA任務副程式流程規劃 52 4.3.4 軟體控制與監控 53 第五章 電路模擬與實驗結果 55 5.1 模擬結果 55 5.1.1 模擬電路圖 55 5.1.2 模擬波形 56 5.2 實驗結果 58 5.2.1 啟動波形 58 5.2.2 錯相控制波形 61 5.2.3 輸入電壓與輸出電壓漣波波形 62 5.2.4 上下臂開關交點波形 63 5.2.5 換向電流波形 66 5.2.6 通信介面資料封包波形 67 5.2.7 實驗數據 68 5.2.8 實際電路圖 73 第六章 結論與未來展望 74 6.1 結論 74 6.2 未來展望 74 參考文獻 75

    [1] European Commission. CO₂ emission performance standards for cars and vans. [Online]. Available: https://ec.europa.eu/clima/eu-action/transport-emissions/road-transport-reducing-co2-emissions-vehicles/co2-emission-performance-standards-cars-and-vans_en
    [2] United States Environmental Protection Agency, Average Annual Emissions and Fuel Consumption for Gasoline-Fueled Passenger Cars and Light Trucks, EPA420-F-08-024, October 2008.
    [3] P. Miller, “xEV market trend and prospect,” 2012 IEEE Vehicle Power and Propulsion Conference, 2012, pp. 1095-1099, doi: 10.1109/VPPC.2012.6422499.
    [4] Z. Liu, S. Onori and A. Ivanco, “Synthesis and Experimental Vali-da-tion of Battery Aging Test Profiles Based on Real-World Duty Cy-cles for 48-V Mild Hybrid Vehicles,” in IEEE Transactions on Vehic-ular Technology, vol. 66, no. 10, pp. 8702-8709, Oct. 2017, doi: 10.1109/TVT.2017.2717187.
    [5] ZEVI. 48-Volt Electrical Systems - A Key Technology Paving to the Road to Electric Mobility. [Online]. Available: https://www.zvei.org/en/press-media/publications/48-volt-electrical-systems-a-key-technology-paving-the-road-to-electric-mobility
    [6] WKS Informatik GmbH. LV 124/LV 148. [Online]. Available: https://www.wks-informatik.de//wp-content/uploads/DocumentDownloads/June2017/LV124_LV148_WKSInformatikSolutions.pdf
    [7] K. Wang, C. Y. Lin, L. Zhu, D. Qu, F. C. Lee and J. S. Lai, “Bi-directional DC to DC converters for fuel cell systems,” Power Electronics in Transportation (Cat. No.98TH8349), 1998, pp. 47-51, doi: 10.1109/PET.1998.731056.
    [8] H. Chiu and L. Lin, “A bidirectional DC–DC converter for fuel cell electric vehicle driving system,” in IEEE Transactions on Power Electronics, vol. 21, no. 4, pp. 950-958, July 2006, doi: 10.1109/TPEL.2006.876863.
    [9] A. N. Rahman, C. Chan, J. Lin, H. Chiu and Y. Hsieh, “Digitally controlled bidirectional testing platform for high power battery charger systems,” 2017 International Symposium on Electronics and Smart Devices (ISESD), 2017, pp. 273-277, doi: 10.1109/ISESD.2017.8253347.
    [10] 黃大維,雙向直流-直流轉換器模組之研製,國立台灣科技大學電子工程系碩士論文,2014年。
    [11] Texas Instruments. TIDA-01168 Reference Design. [Online]. Availa-ble: http://www.ti.com/lit/ug/tiducs2b/tiducs2b.pdf.
    [12] A. Lidow, “GaN as a displacement technology for silicon in power management,” 2011 IEEE Energy Conversion Congress and Exposi-tion, 2011, pp. 1-6, doi: 10.1109/ECCE.2011.6063741.
    [13] D. Reusch, J. Strydom and A. Lidow, “Highly efficient gallium nitride transistors designed for high power density and high output current DC-DC converters,” 2014 International Power Electronics and Ap-plication Conference and Exposition, 2014, pp. 456-461, doi: 10.1109/PEAC.2014.7037899.
    [14] R. Rong and R. Wang, “High efficiency 1.5kW 48V-12V DCDC converter with Leadless MOSFET for Mild Hybrid Electric Vehicle,” PCIM Asia 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Man-agement, 2018, pp. 1-6.
    [15] E. A. Jones, M. de Rooij and S. Biswas, “GaN Based DC-DC Con-verter for 48 V Automotive Applications,” 2019 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), 2019, pp. 1-6, doi: 10.1109/WiPDAAsia.2019.8760327.
    [16] B. Li, W. Qin, Y. Yang, Q. Li, F. C. Lee and D. Liu, “A High Fre-quency High Efficiency GaN Based Bi-Directional 48V/12V Con-verter with PCB Coupled Inductor for Mild Hybrid Vehicle,” 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applica-tions (WiPDA), 2018, pp. 204-211, doi: 10.1109/WiPDA.2018.8569067.
    [17] D. Reusch and J. Strydom, “Understanding the Effect of PCB Layout on Circuit Performance in a High-Frequency Gallium-Nitride-Based Point of Load Converter,” in IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 2008-2015, April 2014, doi: 10.1109/TPEL.2013.2266103.
    [18] U. K. Mishra, L. Shen, T. E. Kazior and Y. -F. Wu, “GaN-Based RF Power Devices and Amplifiers,” in Proceedings of the IEEE, vol. 96, no. 2, pp. 287-305, Feb. 2008, doi: 10.1109/JPROC.2007.911060.
    [19] Infineon. Wide Bandgap Semiconductors (SiC/GaN). [Online]. Available: https://www.infineon.com/cms/en/product/technology/wide-bandgap-semiconductors-sic-gan/
    [20] C. Parisi, “Multiphase Buck Design From Start to Finish (Part 1)” Texas Instruments, Application Report SLVA882, Apr. 2017.
    [21] M. Xie, “How to select input capacitors for buck converter” Texas In-struments, Analog Application Journal, 2016.
    [22] J. Hua, “Output Noise Filtering for DC/DC Power Modules” Texas Instruments, Application Report SNVA871, Apr. 2019.
    [23] D. Wen, “Analysis of buck converter efficiency” Richtek Technology, Application Note, 2014.
    [24] Y. -F. Liu and X. Liu, “Recent developments in digital control strate-gies for DC/DC switching power converters,” 2009 IEEE 6th Inter-national Power Electronics and Motion Control Conference, 2009, pp. 307-314, doi: 10.1109/IPEMC.2009.5157404.
    [25] D. G. Holmes, T. A. Lipo, B. P. McGrath and W. Y. Kong, “Optimized Design of Stationary Frame Three Phase AC Current Regulators,” in IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2417-2426, Nov. 2009, doi: 10.1109/TPEL.2009.2029548.
    [26] M. -T. Tsai, D. Chen, C. -J. Chen, C. -H. Chiu and W. -H. Chang, “Modeling and design of current balancing control in voltage-mode multiphase interleaved voltage regulators,” The 2010 International Power Electronics Conference - ECCE ASIA -, 2010, pp. 881-887, doi: 10.1109/IPEC.2010.5543348.
    [27] W. Guo and P. K. Jain, “Analysis and Modeling of Voltage Mode Controlled Phase Current Balancing Technique for Multiphase Voltage Regulator to Power High Frequency Dynamic Load,” 2009 Twen-ty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, 2009, pp. 1190-1196, doi: 10.1109/APEC.2009.4802814.
    [28] S. Chattopadhyay and S. Das, “A Digital Current-Mode Control Technique for DC–DC Converters,” in IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1718-1726, Nov. 2006, doi: 10.1109/TPEL.2006.882929.
    [29] M. Rodriguez, V. M. Lopez, F. J. Azcondo, J. Sebastian and D. Maksimovic, “Average Inductor Current Sensor for Digitally Con-trolled Switched-Mode Power Supplies,” in IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3795-3806, Aug. 2012, doi: 10.1109/TPEL.2012.2183893.
    [30] Texas Instruments, TMS320F28004x Microcontrollers, Datasheet, 2017.

    QR CODE