簡易檢索 / 詳目顯示

研究生: 莊竣宇
Chun-Yu Chuang
論文名稱: 功因修正器之數位控制
Digital Controllers for a Power Factor Corrector
指導教授: 劉添華
Tian-Hua Liu
口試委員: 廖聰明
none
許源浴
none
劉益華
none
林法正
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 120
中文關鍵詞: 功因校正器平均電流法DSPFPGA
外文關鍵詞: power factor correction, averaging current technique, DSP, FPGA
相關次數: 點閱:224下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研製一部具有功因校正的交/直流轉換器,採用連續電流控制模式的平均電流法,分別以DSP和FPGA實現功因校正的控制。文中研製300W,100kHz切換頻率的交流110V/直流400V轉換器。並以實驗結果說明DSP控制具有較佳的暫態響應;然而FPGA控制具有較佳的功因及較低的諧波電流。
    文中並建立小信號數學模型,再以電腦模擬繪出波德圖,由相關的波德圖決定頻寬及相位餘裕度,以供設計比例積分控制器的依據,最後以模擬結果作為實際設計控制器的參考。


    This thesis studies a power factor corrector for an ac/dc converter. The averaging current technique of continuous current control mode is used to implement the power factor correction circuit. The controller is realized by using a DSP and a FPGA to achieve the power factor correction. A 300W, 100kHz, AC 110V/DC 400V converter has been implemented. Experimental results show the different characteristics between DSP control and FPGA control. The results show that the DSP control has better transient responses;however, the FPGA control provides better power factor and low harmonic currents.

    This thesis establishes small signal model and uses computer simulation results to draw Bode diagram. Proportional-integral controller is designed according to the bandwidth and phase margin of the Bode diagram. Finally, the simulation results are used as a reference for the design of the controller.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 XII 符號目錄 XIII 第一章 緒論 1 1.1 背景與動機 1 1.2 文獻回顧 4 1.3 論文大綱 6 第二章 功率因數校正原理 7 2.1 功因與諧波失真之定義 8 2.2 功因修正器的種類 11 2.2.1 被動式 12 2.2.2 主動式 13 2.3 主動式功因修正電路控制模式 13 2.3.1 不連續導通模式 13 2.3.2 連續導通模式 15 第三章 功因修正器電路分析 19 3.1 電路架構 19 3.2 升壓式轉換器模型 23 3.3 升壓式轉換器功因校正控制迴路模型 29 3.3.1 升壓式轉換器功因校正控制原理 30 3.3.2 前饋補償乘法器設計 31 3.3.3 電壓控制迴路設計 35 3.3.4 電流控制迴路設計 41 第四章 硬體研製 44 4.1 簡介 44 4.2 功率級電路設計 47 4.2.1 儲能電感設計 47 4.2.2 輸出電容設計 49 4.2.3 功率開關、二極體和整流器的選擇 50 4.3 迴授電路設計 51 4.3.1 電壓迴授電路 52 4.3.2 電流迴授電路 55 4.4 類比/數位轉換器電路 57 4.5 驅動電路設計 59 第五章 數位控制平台設計 60 5.1 FPGA控制平台設計 62 5.1.1 簡介 62 5.1.2 程式流程 74 5.1.3 FPGA實現類比/數位轉換設計 75 5.1.4 FPGA實現控制迴路設計 77 5.1.5 FPGA實現DPWM設計 85 5.2 DSP控制平台設計 88 5.2.1 簡介 88 5.2.2 軟體程式設計 91 第六章 實測 95 6.1 簡介 95 6.2 實測結果 95 第七章 結論與建議 116 參考文獻 117

    [1] K. N. Sakthivel, S. K. Das, and K. R. Kini, “Importance of quality AC power distribution and understanding of EMC standards IEC 61000-3-2, IEC 61000-3-3 and IEC 61000-3-11,” IEEE ICEMIC-2003, pp. 423-430, Dec. 2003.
    [2] M. B. Lin, Digital system designs and practices : using Verilog HDL and FPGAs, Singapore : J. Wiley & Sons, Sept. 2008.
    [3] F. Taeed, Z. Salam, and S. M. Ayob, “FPGA implementation of a single-input fuzzy logic controller for boost converter with the absence of an external analog-to-digital converter,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1208-1217, Feb. 2012.
    [4] L. Roggia, F. Beltrame, J. E. Baggio, and J. R. Pinheiro, “Digital current controllers applied to the boost power factor correction converter with load variation,” IET Power Electronics, vol. 5, no. 5, pp. 532-541, May 2012.
    [5] F. Z. Chen and D. Maksimović, “Digital control for improved efficiency and reduced harmonic distortion over wide load range in boost PFC rectifiers,” IEEE Transactions on Power Electronics, vol. 25, no. 10, pp. 2683-2692, Oct. 2010.
    [6] N. Yadaiah, A. S. kumar, and Y. M. Reddy , “DSP based control of constant frequency and average current mode of boost converter for power factor correction (PFC),” IEEE APCET-2012, pp. 1-6, Aug. 2012.
    [7] B. Li, S. Guo, L. S. Xuefang, and B. Allard, “Design and implementation of the digital controller for boost converter based on FPGA,” IEEE ISIE-2011, pp. 1549-1554, June 2011.
    [8] T. K. Jappe and S. A. Mussa, “Current technique applied in single phase PFC boost converter based on discrete-time One Cycle Control,” IEEE INTLEC-2011, pp.1-5, Oct. 2011.
    [9] V. M. L. Martin, F. J. Azcondo, and A. D. Castro, “Current error compensation for current-sensorless power factor corrector stage in continuous conduction mode,” IEEE COMPEL-2012, pp. 1-8, June 2012.
    [10] C. P. Ku, D. Chen, and S. H. Lin, “A new control scheme for boost PFC converters for both CCM and DCM operations,” IEEE ECCE-2011, pp. 1334-1338, Sept. 2011.
    [11] W. H. Wang and Y. Y. Tzou, “Using repetitive control for light load THD and efficiency improvement for boost digital PFC converters,” IEEE IPEMC-2012, pp. 1915-1920, June 2012.
    [12] B. A. Mather and D. Maksimović, “A simple digital power-factor correction rectifier controller,” IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 9-19, Jan. 2011.
    [13] V. M. L. Martin, F. J. Azcondo, and A. D. Castro, “High-resolution error compensation in continuous conduction mode power factor correction stage without current sensor,” IEEE EPE PEMC-2012, pp. LS3c.2-1-LS3c.2-8, Sept. 2012.
    [14] S. J. Chen, S. P. Yang, and R. H. Wong, “FPGA-based digital control for boost converters with power factor correction,” IEEE ICIEA-2012, pp. 1102-1106, July 2012.
    [15] E. F. C. Grabovski, T. K. Jappe, and S. A. Mussa, “Discrete hardware controllers design of a single phase PFC boost converter with FPGA,” IEEE PEMD-2012, pp. 1-5, March 2012.
    [16] X. Yong, F. Yu, L. Hangjun, and Y. Mingxing, “A novel boost PFC control method for reducing the operation time of DSP,” IEEE ICIT-2010, pp. 656-660, March 2010.
    [17] N. Genc and I. Iskender, “DSP-based current sharing of average current controlled two-cell interleaved boost power factor correction converter,” IET Power Electronics, vol. 4, no. 9, pp. 1015-1022, November 2011.
    [18] W. H. Wang and Y. Y. Tzou, “Using repetitive control for THD reduction over wide load range for boost digital PFC converters,” IEEE ISIE-2012, pp. 576-581, May 2012.
    [19] T. K. Jappe, S. A. Mussa, and R. H. S. Rosendo, “Synchronous state machine inner FPGA controlling PFC boost converter,” IEEE ISIE-2010, pp. 1097-1102, July 2010.
    [20] R. A. D. Camara, P. P. Praca, C. M. T. Cruz, and R. P. T. Bascope, “Three-level boost rectifier with FPGA digital control,” IEEE INDUSCON-2010, pp. 1-6, Nov. 2010.
    [21] X. Lu, Y. Xie, L. Cheng , Z. Wang , and C. Gui, “Semi-bridgeless boost PFC rectifier for wide voltage input range based on voltage feed-forward control,” IEEE IPEMC-2012, pp. 1894-1899, June 2012.
    [22] T. Grote, H. K. Figge, N. Frohleke, J. Bocker, and F. Schafmeister “Digital control strategy for multi-phase interleaved boundary mode and DCM boost PFC converters,” IEEE ECCE-2011, pp. 3186-3192, Sept. 2011.
    [23] F. Z. Chen and D. Maksimovic, “Digital control for efficiency improvements in interleaved boost PFC rectifiers,” IEEE APEC-2010, pp. 188-195, Feb. 2010.
    [24] X. Zhang and J. W. Spencer, “Analysis of boost PFC converters operating in the discontinuous conduction mode,” IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3621-3628, Dec. 2011.
    [25] X. Zhang, B. Wang, H. Ding, and D. Xu, “Study of CCM boost PFC based on simulink,” IEEE IPEMC-2012, pp. 1756-1760, June 2012.
    [26] Y. M. Roshan and M. Moallem, “Control of a boost converter for resistive input behavior in the continuous conduction mode,” IEEE IECON-2012, pp. 310-315, Oct. 2012.
    [27] Wanfeng Zhang, Guang Feng, Yan-Fei Liu and Bin Wu, “A digital power factor correction control optimized for DSP, ” IEEE Transactions on Power Electronics, vol. 19, no. 6, pp. 1474-1485, Nov. 2004.
    [28] Jianlong Zou, Xikui Ma and Changqing Du, “Asymmetrical oscillations in digitally controlled power-factor-corrector boost converters, ” IEEE Transactions on Circuits And Systems, vol. 56, no. 3, pp. 230-234, March 2009.
    [29] Emilio Figueres, Jose Manuel Benavent, Gabriel Garcera and Marcos Pascual, “A control circuit with load-current injection for single-phase power-factor-correction rectifiers, ” IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1272-1281, June 2007
    [30] Analog Device, A/D Converter AD7822, Datasheet, 2006.
    [31] Hewlett-Packard,HCPL-3120 Amp Output Current IGBT Gate Drive Optocoupler, Datasheet, 2008.
    [32] Altera, DE2-115 User Manual, 2012.
    [33] Y. Chen and Q. Wu, “Design and implementation of PID controller based on FPGA and genetic algorithm,” IEEE ICEOE-2011, pp. V4-308-V4-311, July 2011.
    [34] B. Behnam and M. Mansouryar, “Modeling and simulation of a DC motor control system with digital PID controller and encoder in FPGA using Xilinx system generator,” IEEE ICA-2011, pp. 104-108, Nov. 2011.
    [35] A. Senturk and M. Gok, “Pipelined large multiplier designs on FPGAs,” IEEE DSD -2012, pp. 809-814, Sept. 2012.
    [36] O. Hock and P. Drgona, “PWM modulator with increased reliability in FPGA circuit,” IEEE ELEKTRO-2012, pp. 121-124, May 2012.
    [37] Spectrum Digital, TMS320F2808 Evaluation Module Technical Reference, 2004.

    無法下載圖示 全文公開日期 2018/07/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE