簡易檢索 / 詳目顯示

研究生: 鄭又睿
You-Rui Zheng
論文名稱: 四階層飛馳電容型圖騰柱功率因數修正器之研製
Design and Implementment of Four Level Flying Capacitor Totem Pole Power Factor Correction
指導教授: 林景源
Jing-Yuan Lin
口試委員: 謝耀慶
Yao-Ching Hsieh
邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
張佑丞
Yu-Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 92
中文關鍵詞: 無橋式圖騰柱功率因數修正器四階層飛馳電容型圖騰柱高效率高功率密度平板式電感氮化鎵開關
外文關鍵詞: totem pole bridgeless PFC, four level flying capacitor PFC, high efficiency, high power density, planar inductor, GaN device
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文介紹多階層飛馳電容型圖騰柱功率因數修正器,以3 kW四階層飛馳電容型圖騰柱功率因數修正器搭配200 V氮化鎵功率開關來設計與探討。與傳統二階圖騰柱功率因數修正器相比,四階層飛馳電容型圖騰柱功率因數修正器可以利用低耐壓的氮化鎵開關、減少電感上的電壓應力,並增加電感等效漣波頻率。因此電感體積會比傳統二階圖騰柱功率因數修正器小,且低壓氮化鎵開關體積比高壓氮化鎵開關小上許多,寄生元件特性也比較好,即使開關數量較多,四階層飛馳電容型圖騰柱功率因數修正器仍舊擁有高效率與高功率密度的特性。本文還會分析電路動作原理、控制迴路、數位補償器,並利用多重的參數比較設計平板電感,以尋求在固定條件下的最佳設計點。使用模擬軟體PSIM驗證電路相關設計,最後實現輸出功率3 kW、輸入電壓為交流90到264 Vrms,輸出電壓400 VDC,電感電流等效頻率為210 kHz之功率因數修正器。


    This thesis introduces the flying capacitor multilevel (FCML) totem pole bridgeless power-factor-correction (PFC). Design and discuss of 3kW four-level FCML totem pole bridgeless PFC with 200V GaN device. Compared with the conventional two-level totem pole PFC, four-level FCML totem pole bridgeless PFC can utilize the low voltage GaN device, reduces the voltage stress on the inductor and increases the equivalent ripple frequency of the inductor. Therefore, inductor volume will be smaller than conventional two-level totem pole PFC. And low voltage GaN device volume is much smaller than high voltage GaN device, parasitic element characteristics are also better. Even if the number of devices is large, four-level FCML totem pole bridgeless PFC still has the characteris-tics of high efficiency and high power density. This paper will analyze the circuit operation principle, control loop, digital control loop. And utilizes multiple parameters to compare and design planar inductor, to find the best design under fixed conditions. Use simulation software PSIM to verify the design about circuit. Finally implement a PFC with output power of 3 kW, input voltage of 90 to 264Vrms, output voltage of 400V and inductor equivalent frequency of 210kHz.

    摘要 Abstract 致謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 章節大綱 第二章 多階層飛馳電容型圖騰柱功率因數修正器架構分析 2.1 無橋式圖騰柱電路架構介紹 2.2 多階層飛馳電容型圖騰柱電路架構介紹 2.3 多階層飛馳電容型圖騰柱功率因數修正器之階層數比較 第三章 四階層飛馳電容型圖騰柱功率因數修正器分析 3.1 電路架構介紹 3.2 狀態與動作區間分析 3.2.1 D介於0到1/3之間的動作區間分析 3.2.2 D介於1/3到2/3之間的動作分析 3.2.3 D介於2/3到1之間的動作分析 3.3 控制迴路分析 3.3.1 功率因數修器控制方法 3.3.2 電流迴路分析 3.3.3 電壓迴路分析 3.3.4 數位補償器設計 3.4 控制分析 3.4.1 輸入電壓極性判斷 3.4.2 同步整流控制 3.4.3 零交越電感電流突波 第四章 電路設計與實現 4.1 平板電感設計 4.2 開關選用 4.3 電容設計 4.3.1 飛馳電容設計 4.3.2 輸出電容設計 第五章 模擬與實測結果 5.1 模擬結果 5.2 實測結果 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    [1] ENERGY STAR Program Requirements for Computer Servers. [Online]. Available:
    https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%203.0%20Computer%20Servers%20Program%20Requirements_0.pdf
    [2] Wikipedia IEC 61000-3-2. [Online]. Available:
    https://en.wikipedia.org/wiki/IEC_61000-3-2
    [3] “Power Factor Correction Handbook”, ON Semiconductor, 2014.
    [4] A. F. de Souza and I. Barbi, “High power factor rectifier with reduced conduction and commutation losses,” 21st International Telecommu-nications Energy Conference. INTELEC '99 (Cat. No.99CH37007), 1999, pp. 158-.
    [5] W. Choi, J. Kwon, E. Kim, J. Lee and B. Kwon, “Bridgeless Boost Rectifier With Low Conduction Losses and Reduced Diode Re-verse-Recovery Problems,” in IEEE Transactions on Industrial Elec-tronics, vol. 54, no. 2, pp. 769-780, April 2007.
    [6] L. Huber, Y. Jang and M. M. Jovanovic, "Performance Evaluation of Bridgeless PFC Boost Rectifiers," in IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May 2008.
    [7] Yungtaek Jang, M. M. Jovanovic and D. L. Dillman, "Bridgeless PFC boost rectifier with optimized magnetic utilization," 2008 Twen-ty-Third Annual IEEE Applied Power Electronics Conference and Exposition, 2008, pp. 1017-1021.
    [8] F. Musavi, W. Eberle and W. G. Dunford, "A High-Performance Sin-gle-Phase Bridgeless Interleaved PFC Converter for Plug-in Hybrid Electric Vehicle Battery Chargers," in IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1833-1843 , July-Aug. 2011.
    [9] M. Ancuti, M. Svoboda, S. Musuroi, A. Hedes, N. Olarescu and M. Wienmann, "Boost interleaved PFC versus bridgeless boost inter-leaved PFC converter performance/efficiency analysis," 2014 Interna-tional Conference on Applied and Theoretical Electricity (ICATE), 2014, pp. 1-6.
    [10] L. Xue, Z. Shen, D. Boroyevich and P. Mattavelli, "GaN-based high frequency totem-pole bridgeless PFC design with digital implementa-tion," 2015 IEEE Applied Power Electronics Conference and Exposi-tion (APEC), 2015, pp. 759-766.
    [11] L. Zhou, Y. Wu, J. Honea and Z. Wang, "High-efficiency True Bridgeless Totem Pole PFC based on GaN HEMT: Design Challenges and Cost-effective Solution," Proceedings of PCIM Europe 2015; In-ternational Exhibition and Conference for Power Electronics, Intelli-gent Motion, Renewable Energy and Energy Management, 2015, pp. 1-8.
    [12] Infineon Evaluation Boards [Online]. Available:
    https://www.infineon.com/cms/en/product/evaluation-boards/eval_2500w_pfc_gan_a/
    [13] Infineon Evaluation Boards. [Online]. Available:
    https://www.infineon.com/dgdl/Infineon-Evaluationboard_EVAL_3K3W_TP_PFC_SIC-ApplicationNotes-v01_00-EN.pdf?fileId=5546d4626fc1ce0b016fc2ae66e20040
    [14] Jae-Hyun Kim, Gun-Woo Moon and Jae-Kuk Kim, "Ze-ro-voltage-switching totem-pole bridgeless boost rectifier with re-duced reverse-recovery problem for power factor correction," Pro-ceedings of The 7th International Power Electronics and Motion Control Conference, 2012, pp. 1044-1048.
    [15] K. S. Muhammad and Dylan Dah-Chuan Lu, "Two-switch ZCS to-tem-pole bridgeless PFC boost rectifier," 2012 IEEE International Conference on Power and Energy (PECon), 2012, pp. 1-6.
    [16] GaN System Application Notes. [Online]. Available:
    https://gansystems.com/wp-content/uploads/2021/07/GN001_An-Introduction-to-GaN-E-HEMTs-210720.pdf
    [17] Alex Lidow, Michael de Rooij, Johan Strydom, David Reusch, John Glaser, GaN Transistor for Efficient Power Conversion. USA, CA: John Wiley & Sons, 2020.
    [18] Q. Huang and A. Q. Huang, "Review of GaN totem-pole bridgeless PFC," in CPSS Transactions on Power Electronics and Applications, vol. 2, no. 3, pp. 187-196 , Sept. 2017.
    [19] T. A. Meynard and H. Foch, "Multi-level conversion: high voltage choppers and voltage-source inverters," PESC '92 Record. 23rd An-nual IEEE Power Electronics Specialists Conference, 1992, pp. 397-403 vol.1.
    [20] Y. Lei et al., "A 2-kW Single-Phase Seven-Level Flying Capacitor Multilevel Inverter With an Active Energy Buffer," in IEEE Transac-tions on Power Electronics, vol. 32, no. 11, pp. 8570-8581, Nov. 2017.
    [21] I. Moon et al., "Design and implementation of a 1.3 kW, 7-level flying capacitor multilevel AC-DC converter with power factor correction," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 67-73.
    [22] T. T. Vu and G. Young, "Implementation of multi-level bridgeless PFC rectifiers for mid-power single phase applications," 2016 IEEE Ap-plied Power Electronics Conference and Exposition (APEC), 2016, pp. 1835-1841.
    [23] Q. Huang, Q. Ma, P. Liu, A. Q. Huang and M. de Rooij, "3kW Four-Level Flying Capacitor Totem-Pole Bridgeless PFC Rectifier with 200V GaN Devices," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 81-88.
    [24] R.B. Ridley, “Average small-signal analysis of the boost power factor correction circuit”, in Proc. VPEC Seminar Proceedings, 1989, pp. 108-120.
    [25] Chen Zhou and Milan M. Jovanović, “Design trade-offs in continuous current-mode controlled boost power-factor correction circuits”, in Proc. High Frequency Power Conversion Conference (HFPC), 1992.
    [26] Koen De Gusseme, D. M. Van de Sype, A. P. M. Van den Bossche and J. A. Melkebeek, "Digitally controlled boost power-factor-correction converters operating in both continuous and discontinuous conduction mode," in IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 88-97, Feb. 2005.
    [27] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den Bossche and J. A. Melkebeek, "Duty-ratio feedforward for digitally controlled boost PFC converters," in IEEE Transactions on Industrial Electron-ics, vol. 52, no. 1, pp. 108-115, Feb. 2005.
    [28] L. Zhou, Y. Wu, J. Honea and Z. Wang, "High-efficiency True Bridgeless Totem Pole PFC based on GaN HEMT: Design Challenges and Cost-effective Solution," Proceedings of PCIM Europe 2015; In-ternational Exhibition and Conference for Power Electronics, Intelli-gent Motion, Renewable Energy and Energy Management, 2015, pp. 1-8.
    [29] Texas Instruments Inc, “How to reduce current spikes at AC ze-ro-crossing for totem-pole PFC”, Application notes, Oct. 2015.

    [30] GaN System Application Notes. [Online]. Available:
    https://gansystems.com/wp-content/uploads/2021/07/GN002_Thermal-Design-Guide-for-Top-Side-Cooled-GaNpx-T-Devices_Rev-210720.pdf.
    [31] S. Qin, Y. Lei, Z. Ye, D. Chou and R. C. N. Pilawa-Podgurski, "A High-Power-Density Power Factor Correction Front End Based on Seven-Level Flying Capacitor Multilevel Converter," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 3, pp. 1883-1898, Sept. 2019.
    [32] 3C96 datasheet. [Online]. Available:
    https://www.ferroxcube.com/upload/media/product/file/MDS/3c96.pdf.
    [33] ER41/7.6/32 datasheet. [Online]. Available:
    https://www.ferroxcube.com/upload/media/product/file/Pr_ds/ER41_7.6_32.pdf.
    [34] ER32/6/25 datasheet. [Online]. Available:
    https://www.ferroxcube.com/upload/media/product/file/Pr_ds/ER32_6_25.pdf.
    [35] W. A. Roshen, "Fringing Field Formulas and Winding Loss Due to an Air Gap," in IEEE Transactions on Magnetics, vol. 43, no. 8, pp. 3387-3394, Aug. 2007.
    [36] J. Schäfer, D. Bortis and J. W. Kolar, "Novel Highly Efficient/Compact Automotive PCB Winding Inductors Based on the Compensating Air-Gap Fringing Field Concept," in IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9617-9631, Sept. 2020.
    [37] C5750X6S2W225K250KA datasheet. [Online]. Available:
    https://pdf1.alldatasheet.com/datasheet-pdf/view/797962/TDK/C575 0X6S2W225K250KA.html

    無法下載圖示 全文公開日期 2024/10/06 (校內網路)
    全文公開日期 2024/10/06 (校外網路)
    全文公開日期 2024/10/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE