簡易檢索 / 詳目顯示

研究生: 蘇郁鈞
Yu-Chun Su
論文名稱: 雙層共價有機框架的仿生離子二極體膜應用於離子濃度梯度高效能源擷取
Bioinspired Ionic Diode Membranes Based on Two-Layer Covalent-Organic Frameworks for Highly Efficient Energy Harvesting from Ionic Gradients
指導教授: 葉禮賢
Li-Hsien Yeh
口試委員: 葉禮賢
Li-Hsien Yeh
段興宇
Hsing-Yu Tuan
康敦彥
Dun-Yen Kang
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 102
中文關鍵詞: 奈米流體離子傳輸共價有機框架離子整流行為滲透能源
外文關鍵詞: Nanofluidics, Ion transport, Covalent organic framework, Ionic diode behavior, Osmotic energy
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Abstract I 摘要 III Table of Contents IV List of Figures VI List of Tables X Chapter 1 Introduction 1 1.1 Preface 1 1.2 Paper Review 2 1.3 Motivation of Research 14 Chapter 2 Principle and Mechanism 16 2.1 Synthesis Mechanism of Covalent Organic Framework (COF) Membranes 16 2.2 Mechanism of Osmotic Energy Harvesting 17 2.3 Conductance 21 2.4 Electric Double Layer (EDL) 21 2.5 Ion selectivity 23 2.6 Ionic Diode Behavior 24 2.7 Simulation 25 2.7.1 Governing equation 25 2.7.2 Model setting 26 Chapter 3 Experimental Equipment and Methods 30 3.1 Experimental Drugs and Equipment 30 3.1.1 Experimental drugs 30 3.1.2 Experimental equipment and analytical instruments 33 3.2 Experimental Preparation and Methods 37 3.2.1 Synthesis Process of Ionic Diode Covalent Organic Framework Composite Membrane (TFP-TPA/EB COF) 37 3.2.2 Ion transport behavior and osmotic energy harvesting experiments of the TFP-TPA/EB COF composite membrane 38 Chapter 4 Results and Discussion 42 4.1 Material Characterization of TFP-TPA/EB COF Composite Membrane 42 4.1.1 Scanning Electron Microscopy (SEM) analysis results 42 4.1.2 EDX mapping analysis results 43 4.1.3 Morphology and contact angle of TFP-TPA/EB COF composite membrane 44 4.1.4 Fourier Transform Infrared Spectroscopy (FTIR) analysis results 44 4.1.5 13C Nuclear Magnetic Resonance Spectrometer (13C NMR) analysis results 45 4.1.6 Zeta potential analysis results 45 4.1.7 X-ray diffraction (XRD) analysis results 46 4.1.8 Transmission Electron Microscopy (TEM) analysis results 46 4.2 Application of TFP-TPA/EB COF Composite Membranes in Osmotic Energy Harvesting 59 4.2.1 Application of TFP-TPA/EB COF composite membrane in salinity energy harvesting 59 4.2.2 Osmotic energy generation for different salt type 65 4.2.3 Application of TFP-TPA/EB COF composite membrane in acidic solution energy harvesting 65 4.2.4 Application of TFP-TPA/EB COF composite membrane for anionic concentration gradient under pH3 67 Chapter 5 Conclusion 79 References 81

    [1] Ghangrekar, M. M.; Shinde, V. B., Performance of Membrane-Less Microbial Fuel Cell Treating Wastewater and Effect of Electrode Distance and Area on Electricity Production. Bioresour. Technol. 2007, 98, 2879-2885.
    [2] Jadhav, G. S.; Ghangrekar, M. M., Performance of Microbial Fuel Cell Subjected to Variation in Ph, Temperature, External Load and Substrate Concentration. Bioresour. Technol. 2009, 100, 717-723.
    [3] Hussain, A.; Arif, S. M.; Aslam, M., Emerging Renewable and Sustainable Energy Technologies: State of the Art. Renew. Sust. Energ. Rev. 2017, 71, 12-28.
    [4] Østergaard, P. A.; Duic, N.; Noorollahi, Y.; Mikulcic, H.; Kalogirou, S., Sustainable Development Using Renewable Energy Technology. Renew. Energ. 2020, 146, 2430-2437.
    [5] Xu, J.; Lavan, D. A., Designing Artificial Cells to Harness the Biological Ion Concentration Gradient. Nat. Nanotechnol. 2008, 3, 666-670.
    [6] Gotter, A. L.; Kaetzel, M. A.; Dedman, J. R., Electrophorus Electricus as a Model System for the Study of Membrane Excitability. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1998, 119, 225-241.
    [7] Yip, N. Y.; Elimelech, M., Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis. Environ. Sci. Technol. 2014, 48, 11002-11012.
    [8] Sharma, M.; Das, P. P.; Chakraborty, A.; Purkait, M. K., Clean Energy from Salinity Gradients Using Pressure Retarded Osmosis and Reverse Electrodialysis: A Review. Sustain. Energy Technol. Assess. 2022, 49, 101687.
    [9] Pattle, R., Production of Electric Power by Mixing Fresh and Salt Water in the Hydroelectric Pile. Nature 1954, 174, 660-660.
    [10] Weinstein, J. N.; Leitz, F. B., Electric Power from Differences in Salinity: The Dialytic Battery. Science 1976, 191, 557-559.
    [11] Suda, F.; Matsuo, T.; Ushioda, D., Transient Changes in the Power Output from the Concentration Difference Cell (Dialytic Battery) between Seawater and River Water. Energy 2007, 32, 165-173.
    [12] Turek, M.; Bandura, B., Renewable Energy by Reverse Electrodialysis. Desalination 2007, 205, 67-74.
    [13] Długołȩcki, P.; Gambier, A.; Nijmeijer, K.; Wessling, M., Practical Potential of Reverse Electrodialysis as Process for Sustainable Energy Generation. Environ. Sci. Technol. 2009, 43, 6888-6894.
    [14] Vermaas, D. A.; Saakes, M.; Nijmeijer, K., Doubled Power Density from Salinity Gradients at Reduced Intermembrane Distance. Environ. Sci. Technol. 2011, 45, 7089-7095.
    [15] Długołęcki, P.; Nymeijer, K.; Metz, S.; Wessling, M., Current Status of Ion Exchange Membranes for Power Generation from Salinity Gradients. J. Membr. Sci. 2008, 319, 214-222.
    [16] Guler, E.; Zhang, Y.; Saakes, M.; Nijmeijer, K., Tailor‐Made Anion‐Exchange Membranes for Salinity Gradient Power Generation Using Reverse Electrodialysis. ChemSusChem 2012, 5, 2262-2270.
    [17] Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L., High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation. J. Am. Chem. Soc. 2014, 136, 12265-12272.
    [18] Xin, W.; Zhang, Z.; Huang, X.; Hu, Y.; Zhou, T.; Zhu, C.; Kong, X.-Y.; Jiang, L.; Wen, L., High-Performance Silk-Based Hybrid Membranes Employed for Osmotic Energy Conversion. Nat. Commun. 2019, 10, 3876.
    [19] Li, R.; Jiang, J.; Liu, Q.; Xie, Z.; Zhai, J., Hybrid Nanochannel Membrane Based on Polymer/Mof for High-Performance Salinity Gradient Power Generation. Nano Energy 2018, 53, 643-649.
    [20] Ding, L.; Xiao, D.; Lu, Z.; Deng, J.; Wei, Y.; Caro, J.; Wang, H., Oppositely Charged Ti3c2tx Mxene Membranes with 2d Nanofluidic Channels for Osmotic Energy Harvesting. Angew. Chem. Int. Ed. 2020, 132, 8798-8804.
    [21] Wu, Y.; Xin, W.; Kong, X.-Y.; Chen, J.; Qian, Y.; Sun, Y.; Zhao, X.; Chen, W.; Jiang, L.; Wen, L., Enhanced Ion Transport by Graphene Oxide/Cellulose Nanofibers Assembled Membranes for High-Performance Osmotic Energy Harvesting. Mater. Horiz. 2020, 7, 2702-2709.
    [22] Chen, J.; Xin, W.; Chen, W.; Zhao, X.; Qian, Y.; Kong, X.-Y.; Jiang, L.; Wen, L., Biomimetic Nanocomposite Membranes with Ultrahigh Ion Selectivity for Osmotic Power Conversion. ACS Cent. Sci. 2021, 7, 1486-1492.
    [23] Zhao, Y.; Xin, W.; Qian, Y.; Zhang, Z.; Wu, Y.; Lin, X.; Kong, X.-Y.; Jiang, L.; Wen, L., Cement-and-Pebble Nanofluidic Membranes with Stable Acid Resistance as Osmotic Energy Generators. Sci. China Mater. 2022, 65, 2729-2736.
    [24] Hou, S.; Ji, W.; Chen, J.; Teng, Y.; Wen, L.; Jiang, L., Free‐Standing Covalent Organic Framework Membrane for High‐Efficiency Salinity Gradient Energy Conversion. Angew. Chem. Int. Ed. 2021, 133, 10013-10018.
    [25] Man, Z.; Safaei, J.; Zhang, Z.; Wang, Y.; Zhou, D.; Li, P.; Zhang, X.; Jiang, L.; Wang, G., Serosa-Mimetic Nanoarchitecture Membranes for Highly Efficient Osmotic Energy Generation. J. Am. Chem. Soc. 2021, 143, 16206-16216.
    [26] Gao, M.; Zheng, M.-J.; EL-Mahdy, A. F.; Chang, C.-W.; Su, Y.-C.; Hung, W.-H.; Kuo, S.-W.; Yeh, L.-H., A Bioinspired Ionic Diode Membrane Based on Sub-2 Nm Covalent Organic Framework Channels for Ultrahigh Osmotic Energy Generation. Nano Energy 2023, 105, 108007.
    [27] Cao, L.; Chen, I. C.; Liu, X.; Li, Z.; Zhou, Z.; Lai, Z., An Ionic Diode Covalent Organic Framework Membrane for Efficient Osmotic Energy Conversion. ACS Nano 2022, 16, 18910-18920.
    [28] Zhang, Z.; Kong, X.-Y.; Xiao, K.; Liu, Q.; Xie, G.; Li, P.; Ma, J.; Tian, Y.; Wen, L.; Jiang, L., Engineered Asymmetric Heterogeneous Membrane: A Concentration-Gradient-Driven Energy Harvesting Device. J. Am. Chem. Soc. 2015, 137, 14765-14772.
    [29] Zhu, X.; Zhou, Y.; Hao, J.; Bao, B.; Bian, X.; Jiang, X.; Pang, J.; Zhang, H.; Jiang, Z.; Jiang, L., A Charge-Density-Tunable Three/Two-Dimensional Polymer/Graphene Oxide Heterogeneous Nanoporous Membrane for Ion Transport. ACS Nano 2017, 11, 10816-10824.
    [30] Zhang, Z.; Sui, X.; Li, P.; Xie, G.; Kong, X.-Y.; Xiao, K.; Gao, L.; Wen, L.; Jiang, L., Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. J. Am. Chem. Soc. 2017, 139, 8905-8914.
    [31] Zhang, Z.; Yang, S.; Zhang, P.; Zhang, J.; Chen, G.; Feng, X., Mechanically Strong Mxene/Kevlar Nanofiber Composite Membranes as High-Performance Nanofluidic Osmotic Power Generators. Nat. Commun. 2019, 10, 2920.
    [32] Zhou, S.; Xie, L.; Li, X.; Huang, Y.; Zhang, L.; Liang, Q.; Yan, M.; Zeng, J.; Qiu, B.; Liu, T., Interfacial Super‐Assembly of Ordered Mesoporous Carbon‐Silica/Aao Hybrid Membrane with Enhanced Permselectivity for Temperature‐and Ph‐Sensitive Smart Ion Transport. Angew. Chem. Int. Ed. 2021, 133, 26371-26380.
    [33] Yang, G.; Liu, D.; Chen, C.; Qian, Y.; Su, Y.; Qin, S.; Zhang, L.; Wang, X.; Sun, L.; Lei, W., Stable Ti3c2t X Mxene–Boron Nitride Membranes with Low Internal Resistance for Enhanced Salinity Gradient Energy Harvesting. ACS Nano 2021, 15, 6594-6603.
    [34] Li, R.; Zhai, J.; Jiang, J.; Wang, Q.; Wang, S., Improved Interfacial Ion Transport through Nanofluidic Hybrid Membranes Based on Covalent Organic Frameworks for Osmotic Energy Generation. ACS Appl. Energy Mater. 2022, 5, 7176-7184.
    [35] Chang, C.-W.; Chu, C.-W.; Su, Y.-S.; Yeh, L.-H., Space Charge Enhanced Ion Transport in Heterogeneous Polyelectrolyte/Alumina Nanochannel Membranes for High-Performance Osmotic Energy Conversion. J. Mater. Chem. A 2022, 10, 2867-2875.
    [36] Qian, Y.; Liu, D.; Yang, G.; Chen, J.; Ma, Y.; Wang, L.; Wang, X.; Lei, W., Two‐Dimensional Membranes with Highly Charged Nanochannels for Osmotic Energy Conversion. ChemSusChem 2022, 15, e202200933.
    [37] Ding, L.; Zheng, M.; Xiao, D.; Zhao, Z.; Xue, J.; Zhang, S.; Caro, J.; Wang, H., Bioinspired Ti3c2tx Mxene‐Based Ionic Diode Membrane for High‐Efficient Osmotic Energy Conversion. Angew. Chem. Int. Ed. 2022, 61, e202206152.
    [38] Chen, W.; Dong, T.; Xiang, Y.; Qian, Y.; Zhao, X.; Xin, W.; Kong, X. Y.; Jiang, L.; Wen, L., Ionic Crosslinking‐Induced Nanochannels: Nanophase Separation for Ion Transport Promotion. Adv. Mater. 2022, 34, 2108410.
    [39] Safaei, J.; Gao, Y.; Hosseinpour, M.; Zhang, X.; Sun, Y.; Tang, X.; Zhang, Z.; Wang, S.; Guo, X.; Wang, Y.; Chen, Z.; Zhou, D.; Kang, F.; Jiang, L.; Wang, G., Vacancy Engineering for High-Efficiency Nanofluidic Osmotic Energy Generation. Journal of the American Chemical Society 2023, 145, 2669-2678.
    [40] Wang, J.; Wang, L.; Shao, N.; He, M.; Shang, P.; Cui, Z.; Liu, S.; Jiang, N.; Wang, X.; Wang, L., Heterogeneous Two-Dimensional Lamellar Ti3c2tx Membrane for Osmotic Power Harvesting. Chemical Engineering Journal 2023, 452, 139531.
    [41] Wang, S.; Wang, Z.; Fan, Y.; Meng, X.; Wang, F.; Yang, N., Toward Explicit Anion Transport Nanochannels for Osmotic Power Energy Using Positive Charged Mxene Membrane Via Amination Strategy. Journal of Membrane Science 2023, 668, 121203.
    [42] Hao, J.; Ning, Y.; Hou, Y.; Ma, S.; Lin, C.; Zhao, J.; Li, C.; Sui, X., Polydopamine Functionalized Graphene Oxide Membrane with the Sandwich Structure for Osmotic Energy Conversion. Journal of Colloid and Interface Science 2023, 630, 795-803.
    [43] EL-Mahdy, A. F.; Hung, Y.-H.; Mansoure, T. H.; Yu, H.-H.; Hsu, Y.-S.; Wu, K. C.; Kuo, S.-W., Synthesis of [3+ 3] Β-Ketoenamine-Tethered Covalent Organic Frameworks (Cofs) for High-Performance Supercapacitance and Co2 Storage. J. Taiwan Inst. Chem. Engrs. 2019, 103, 199-208.
    [44] Kandambeth, S.; Dey, K.; Banerjee, R., Covalent Organic Frameworks: Chemistry Beyond the Structure. J. Am. Chem. Soc. 2019, 141, 1807-1822.
    [45] Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D., Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem. Rev. 2020, 120, 8814-8933.
    [46] Wang, H.; Wang, H.; Wang, Z.; Tang, L.; Zeng, G.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C.; Li, X., Covalent Organic Framework Photocatalysts: Structures and Applications. Chem. Soc. Rev. 2020, 49, 4135-4165.
    [47] Kohonen, M. M.; Karaman, M. E.; Pashley, R. M., Debye Length in Multivalent Electrolyte Solutions. Langmuir 2000, 16, 5749-5753.
    [48] Tadmor, R.; Hernández-Zapata, E.; Chen, N.; Pincus, P.; Israelachvili, J. N., Debye Length and Double-Layer Forces in Polyelectrolyte Solutions. Macromolecules 2002, 35, 2380-2388.
    [49] Daiguji, H., Ion Transport in Nanofluidic Channels. Chem. Soc. Rev. 2010, 39, 901-911.
    [50] Yeh, L.-H.; Zhang, M.; Qian, S., Ion Transport in a Ph-Regulated Nanopore. Anal Chem 2013, 85, 7527-7534.
    [51] Zeng, Z.; Ai, Y.; Qian, S., Ph-Regulated Ionic Current Rectification in Conical Nanopores Functionalized with Polyelectrolyte Brushes. Phys. Chem. Chem. Phys. 2014, 16, 2465-2474.
    [52] Lin, C.-Y.; Chen, F.; Yeh, L.-H.; Hsu, J.-P., Salt Gradient Driven Ion Transport in Solid-State Nanopores: The Crucial Role of Reservoir Geometry and Size. Phys. Chem. Chem. Phys. 2016, 18, 30160-30165.
    [53] Cao, L.; Xiao, F.; Feng, Y.; Zhu, W.; Geng, W.; Yang, J.; Zhang, X.; Li, N.; Guo, W.; Jiang, L., Anomalous Channel-Length Dependence in Nanofluidic Osmotic Energy Conversion. Adv. Funct. Mater. 2017, 27, 1604302.
    [54] Chen, K.; Yao, L.; Yan, F.; Liu, S.; Yang, R.; Su, B., Thermo-Osmotic Energy Conversion and Storage by Nanochannels. J. Mater. Chem. A 2019, 7, 25258-25261.
    [55] Xiao, F.; Ji, D.; Li, H.; Tang, J.; Feng, Y.; Ding, L.; Cao, L.; Li, N.; Jiang, L.; Guo, W., Simulation of Osmotic Energy Conversion in Nanoporous Materials: A Concise Single-Pore Model. Inorg. Chem. Front. 2018, 5, 1677-1682.
    [56] Mal, A.; Mishra, R. K.; Praveen, V. K.; Khayum, M. A.; Banerjee, R.; Ajayaghosh, A., Supramolecular Reassembly of Self‐Exfoliated Ionic Covalent Organic Nanosheets for Label‐Free Detection of Double‐Stranded DNA. Angew. Chem. Int. Ed. Engl. 2018, 130, 8579-8583.
    [57] Zhu, X.; Hao, J.; Bao, B.; Zhou, Y.; Zhang, H.; Pang, J.; Jiang, Z.; Jiang, L., Unique Ion Rectification in Hypersaline Environment: A High-Performance and Sustainable Power Generator System. Sci. Adv. 2018, 4, eaau1665.
    [58] Tong, X.; Liu, S.; Crittenden, J.; Chen, Y., Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting. ACS Nano 2021, 15, 5838-5860.
    [59] Hao, J.; Bao, B.; Zhou, J.; Cui, Y.; Chen, X.; Zhou, J.; Zhou, Y.; Jiang, L., A Euryhaline‐Fish‐Inspired Salinity Self‐Adaptive Nanofluidic Diode Leads to High‐Performance Blue Energy Harvesters. Adv. Mater. 2022, 34, 2203109.
    [60] Lin, X.; Liu, P.; Xin, W.; Teng, Y.; Chen, J.; Wu, Y.; Zhao, Y.; Kong, X. Y.; Jiang, L.; Wen, L., Heterogeneous Mxene/Ps‐B‐P2vp Nanofluidic Membranes with Controllable Ion Transport for Osmotic Energy Conversion. Adv. Funct. Mater. 2021, 31, 2105013.
    [61] Zhu, C.; Liu, P.; Niu, B.; Liu, Y.; Xin, W.; Chen, W.; Kong, X.-Y.; Zhang, Z.; Jiang, L.; Wen, L., Metallic Two-Dimensional Mos2 Composites as High-Performance Osmotic Energy Conversion Membranes. J. Am. Chem. Soc. 2021, 143, 1932-1940.
    [62] Xin, W.; Xiao, H.; Kong, X.-Y.; Chen, J.; Yang, L.; Niu, B.; Qian, Y.; Teng, Y.; Jiang, L.; Wen, L., Biomimetic Nacre-Like Silk-Crosslinked Membranes for Osmotic Energy Harvesting. ACS Nano 2020, 14, 9701-9710.
    [63] Hou, S.; Zhang, Q.; Zhang, Z.; Kong, X.; Lu, B.; Wen, L.; Jiang, L., Charged Porous Asymmetric Membrane for Enhancing Salinity Gradient Energy Conversion. Nano Energy 2021, 79, 105509.
    [64] Zhao, Y.; Wang, J.; Kong, X.-Y.; Xin, W.; Zhou, T.; Qian, Y.; Yang, L.; Pang, J.; Jiang, L.; Wen, L., Robust Sulfonated Poly (Ether Ether Ketone) Nanochannels for High-Performance Osmotic Energy Conversion. Natl. Sci. Rev. 2020, 7, 1349-1359.
    [65] Chen, J.; Xin, W.; Kong, X.-Y.; Qian, Y.; Zhao, X.; Chen, W.; Sun, Y.; Wu, Y.; Jiang, L.; Wen, L., Ultrathin and Robust Silk Fibroin Membrane for High-Performance Osmotic Energy Conversion. ACS Energy Lett. 2020, 5, 742-748.
    [66] Chen, W.; Wang, Q.; Chen, J.; Zhang, Q.; Zhao, X.; Qian, Y.; Zhu, C.; Yang, L.; Zhao, Y.; Kong, X.-Y.; Lu, B.; Jiang, L.; Wen, L., Improved Ion Transport and High Energy Conversion through Hydrogel Membrane with 3d Interconnected Nanopores. Nano Lett. 2020, 20, 5705-5713.
    [67] Chen, C.; Yang, G.; Liu, D.; Wang, X.; Kotov, N. A.; Lei, W., Aramid Nanofiber Membranes for Energy Harvesting from Proton Gradients. Adv. Funct. Mater. 2022, 32, 2102080.
    [68] Liu, P.; Zhou, T.; Yang, L.; Zhu, C.; Teng, Y.; Kong, X.-Y.; Wen, L., Synergy of Light and Acid–Base Reaction in Energy Conversion Based on Cellulose Nanofiber Intercalated Titanium Carbide Composite Nanofluidics. Energy Environ. Sci. 2021, 14, 4400-4409.

    無法下載圖示 全文公開日期 2028/08/14 (校內網路)
    全文公開日期 2028/08/14 (校外網路)
    全文公開日期 2028/08/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE