簡易檢索 / 詳目顯示

研究生: 林政宏
Cheng-Hung Lin
論文名稱: 高功率密度主動箝位返馳式轉換器之研製
Design and Implementation of a High Power Density Active-Clamped Flyback Converter
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
林景源
Jing-Yuan Lin
鄭宏良
Hung-Liang Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 108
中文關鍵詞: 氮化鎵元件主動箝位返馳式轉換器高頻高功率密度繞組走線寬度比
外文關鍵詞: Gallium nitride device, active-clamped flyback converter, high frequency, high power density, track-width-ratio
相關次數: 點閱:335下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製高功率密度功率轉換器,以主動箝位返馳式轉換器做為電路架構。消除傳統返馳式轉換器開關上電壓突波,減少電磁干擾以及開關電壓應力,並介紹主開關在高頻操作下,零電壓切換條件與激磁電感的關係。且使用氮化鎵元件取代傳統之矽功率開關,減少轉換器體積以及高頻開關造成的切換損耗,增加整體電路的功率密度。在薄型平板變壓器的基礎上,藉由改變繞組設計方式,降低二次側電流造成之線損以及電流應力,並改變繞組走線寬度比,改善一次側之繞組線損,同時減少板層間的積熱。分析繞組次序以及不同繞組線寬的改善,以達到繞組之最佳化。
    透過理論分析與電路模擬,完成主動箝位返馳式轉換器之設計及實作,在全域輸入電壓條件、輸出19 V/ 65 W的規格下,低壓效率達到93 %,功率密度為1.879 W/ cm3,並驗證繞組走線寬度比對損耗之影響。


    This thesis presents a high power density power converter. The voltage spike in the conventional flyback converter can be eliminated to reduce electromagnetic interference and voltage stresses on power switches by using active-clamped circuit. The relationship between zero-voltage-switching condition of high frequency power switches and magnetizing inductance and leakage inductance is analyzed and discussed. Gallium nitride devices are used both at primary and secondary switches to reduce the converter volume and switching losses to achieve high power density. Based on the planar transformer design, reducing the conduction losses and current stresses of secondary switches by changing the winding configuration. The losses and heat in the inner winding layers can be reduced by adjusting track-width-ratio design. The winding performance can be improved by the sequences and trace width of windings.
    With theoretical analysis and circuit simulation, a 65 W (19 V/ 3.3 A) active-clamped flyback converter with universal input voltage range is developed and tested to verify the track-width-ratio design with efficiency comparison. The peak efficiency can be up to 93 % at low line voltage and the power density is 1.879 W/ cm3.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 v 圖索引 vii 表索引 xi 第一章 緒論 1 1.1研究動機與目的 1 1.2論文大綱 3 第二章 氮化鎵元件特性 5 2.1氮化鎵元件介紹 5 2.1.1氮化鎵元件結構 5 2.1.2氮化鎵元件佈線考量 6 2.2氮化鎵元件分析與測試 12 第三章 電路動作原理 20 3.1主動箝位返馳式轉換器動作原理 20 3.1.1主動箝位返馳式轉換器穩態分析 20 3.1.2主動箝位返馳式轉換器區間時序分析 22 3.2高頻主動箝位返馳式轉換器動作原理 30 第四章 薄型變壓器設計考量 36 4.1鐵芯設計考慮 36 4.2繞組設計考量 43 4.2.1繞組擴展之方法分析 44 4.2.2繞組次序 51 4.2.3繞組線寬 52 第五章 實作驗證 70 5.1電路設計 71 5.2實驗結果 79 第六章 結論與未來展望 87 6.1結論 87 6.2未來展望 88 參考文獻 89

    [1] GaN Systems. (2016). How to drive GaN Enhancement mode HEMT [Online]. Available: http://www.mouser.com/pdfDocs/343654_GaNSystems__GN001_How_To_drive_GaN_EHEMT_Rev_20160426.pdf
    [2] GaN Systems. (2017). About Gallium Nitride [Online]. Available: http://www.gansystems.com/why_gallium_nitride_new.php
    [3] GaN Systems. (2015). PCB Thermal Design Guide for GaN Enhancement Mode Power Transistors [Online]. Available: http://www.ecomal.com/fileadmin/Datenblaetter/GaN_Systems/App_Notes/GN005_App_Note-PCB_Thermal_Design_Guide_for_GaN_Enhancement_Mode_Power_Transistors.pdf
    [4] EPC. (2012). Gallium Nitride (GaN) Technology Overview [Online]. Available: http://epc-co.com/epc/Portals/0/epc/documents/publications/GaN%20Transistors%20for%20Efficient%20Power%20Conversion%20-%20Chapter%201.pdf
    [5] EPC. (2012). Paralleling eGaN FETs [Online]. Available: http://www.digikey.com.mx/Web%20Export/Supplier%20Content/EfficientPowerConversion_917/PDF/epc-wp-wp005.pdf
    [6] EPC. (2016). eGaN FET Drivers and Layout Considerations [Online]. Available: http://epc-co.com/epc/Portals/0/epc/documents/papers/eGaN%20FET%20Drivers%20and%20Layout%20Considerations.pdf
    [7] E. A. Jones, F. Wang, D. Costinett, Z. Zhang, B. Guo, B. Liu, and R. Ren, “Characterization of an enhancement-mode 650-V GaN HFET,” in Proc. ECCE, 2015.
    [8] R. Watson, F. C. Lee, and G. C. Hua, “Utilization of an active-clamp circuit to achieve soft switching in flyback converters,” IEEE Transactions on Power Electronics, vol. 11, no. 1, pp. 162-169, Jan. 1996.
    [9] S. Larousse, H. Razik, R. Cellier, N. Abouchi, and P. Volay, “Active dead-time optimization for wide range flyback active-clamp converter,” in Proc. PCIM Europe, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2016.
    [10] T. LaBella, B. York, C. Hutchens, and J. S. Lai, “Dead time optimization through loss analysis of an active-clamp flyback converter utilizing GaN devices,” in Proc. ECCE, 2012.
    [11] M. A. Bakar, K. Bertilsson, and R. Ambatipudi, “High frequency (MHz) soft switched flyback dc-dc converter using GaN switches and six-layered PCB transformer,” in Proc. PEMD, 2016.
    [12] Z. Zhang, K. D. T. Ngo, and J. L. Nilles, “A 30-W flyback converter operating at 5 MHz,” in Proc. APEC, 2014.
    [13] X. Huang, J. Feng, W. Du, F. C. Lee, and Q. Li, “Design consideration of MHz active clamp flyback converter with GaN devices for low power adapter application,” in Proc. APEC, 2016.
    [14] R. Perrin, N. Quentin, B. Allard, C. Martin, and M. Ali, “High-temperature GaN active-clamp flyback converter with resonant operation mode,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 1077-1085, Mar. 2016.
    [15] J. h. Jung and S. Ahmed, “Flyback converter with novel active clamp control and secondary side post regulator for low standby power consumption under high-efficiency operation,” IET Power Electronics, vol. 4, no. 9, pp. 1058-1067, Oct. 2011.
    [16] J. Zhang, X. Huang, X. Wu, and Z. Qian, “A high efficiency flyback converter with new active clamp technique,” IEEE Transactions on Power Electronics, vol. 25, no. 7, pp. 1775-1785, Feb. 2010.
    [17] N. Quentin, R. Perrin, C. Martin, C. Joubert, B. Lacombe, and C. Buttay, “GaN active-clamp flyback converter with resonant operation over a wide input voltage range,” in Proc. PCIM, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2016.
    [18] Y. T. Yau, W. Z. Jiang, and K. I. Hwu, “Light-load efficiency improvement for flyback converter based on hybrid clamp circuit,” in Proc. ICIT, 2016.
    [19] J. H. Kim, M. H. Ryu, B. D. Min, and E. H. Song, “A method to reduce power consumption of active-clamped flyback converter at no-load condition,” in Proc. IECON, 2006.
    [20] D. Murthy-Bellur and M. K. Kazimierczuk, “Active-clamp ZVS two-switch flyback converter,” in Proc. ISCAS, 2011.
    [21] Y. Yang, D. Huang, F. C. Lee, and Q. Li, “Analysis and reduction of common mode EMI noise for resonant converters,” in Proc. APEC, 2014.
    [22] X. Huang, J. Feng, F. C. Lee, Q. Li, and Y. Yang, “Conducted EMI analysis and filter design for MHz active clamp flyback front-end converter,” in Proc. APEC, 2016.
    [23] D. Reusch and F. C. Lee, “High frequency bus converter with integrated matrix transformers for CPU and telecommunications applications,” in Proc. IEEE Energy Conversion Congress and Exposition, 2010.
    [24] D. Reusch and F. C. Lee, “High frequency bus converter with low loss integrated matrix transformer,” in Proc. APEC, 2012.
    [25] D. Fu, F. C. Lee, and S. Wang, “Investigation on transformer design of high frequency high efficiency dc-dc converters,” in Proc. APEC, 2010.
    [26] D. Huang, S. Ji, and F. C. Lee, “LLC resonant converter with matrix transformer,” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4339-4347, Nov. 2014.
    [27] S. R. Cove, M. Ordonez, N. Shafiei, and J. Zhu, “Improving wireless power transfer efficiency using hollow windings with track-width-ratio,” IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6524-6533, Nov. 2015.
    [28] S. R. Cove and M. Ordonez, “Wireless-power-transfer planar spiral winding design applying track width ratio,” IEEE Transactions on Industry Applications, vol. 51, no. 3, pp. 2423-2433, Nov. 2014.
    [29] GaN Systems. (2017). GS66504B Bottom-side cooled 650 V E-mode GaN transistor Preliminary Datasheet [Online]. Available: http://www.gansystems.com/datasheets/GS66504B%20DS%20Rev%20170321.pdf
    [30] ACME electronics corporation. (2015). ACME product [Online]. Available: http://www.acme-ferrite.com.tw/images/pro/acme_product.pdf

    QR CODE