簡易檢索 / 詳目顯示

研究生: 薛育珩
Yu-Heng Hsueh
論文名稱: 脂肪長鏈型硬化劑對環氧樹脂-酸酐熱固化系統之增韌性質研究
A Study on Toughen Property of Epoxy-Anhydride Thermosets with an Aliphatic Long Chain Hardener
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 游進陽
陳建光
江宗穎
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 79
中文關鍵詞: 環氧樹脂酸酐硬化劑增韌
外文關鍵詞: epoxy resin, anhydride-typed hardener, toughness
相關次數: 點閱:212下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本研究中將使用具有長脂肪鏈段之酸酐型硬化劑(Long Chain Hardener)作為環氧樹脂的增軔劑,增進其斷裂韌性以及其他機械性能。因此為化學性增韌的緣故,在環氧樹脂-酸酐的反應系統中可達到反應前為均相,反應後也不會有分相的情況發生。首先我們利用FTIR、NMR、MASS等光譜儀分析Long Chain Hardener之官能基以及脂肪鏈段在結構中的分佈情形,接著用DSC、TGA、DMA進行加工條件與熱性質之分析,機械性能則利用拉伸試驗、三點彎曲測試,IZOD衝擊試驗確認衝擊強度的改變。我們發現具有軟性鏈段分子的結構雖然會使玻璃轉移溫度下降,但其拉伸、抗彎性能在一定比例下均有所提升,耐衝擊性能也隨軟鏈段添加比例上升而提升。原因在於軟性結構含量與交聯密度之間相互影響所造成。實驗結果也顯示軟性鏈段在玻璃態結構中可提升其斷裂韌性但又不使其失去主要的機械性能。


In this study, an anhydride-typed Long Chain Hardener with aliphatic chains will be used to improve epoxy fracture toughness and other mechanical properties. For the sake of chemical toughening,the liquid phase can be homogeneous before curing reaction start and no phase separation happen in epoxy-anhydride network. We use FTIR, NMR, MASS to determinate Long Chain Hardener functional groups and aliphatic chains in the structure of the distribution.Then use DSC, TGA, DMA to analyze processing conditions and thermal properties, the mechanical properties of the use of tensile test, three-point bending and IZOD impact test to confirm the impact strength. We found that the structure with soft segments will decrease the glass transition temperature. However the tensile, bending performance improved and impact resistance also increased. This is caused by chemical structure and cross-linking density. The experimental results also show that the soft chains can enhance its fracture toughness in the glassy state without losing its main mechanical properties.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 研究動機 1 1.2 環氧樹脂之介紹 2 1.2.1 環氧樹脂之發展 2 1.2.2 環氧樹脂之結構 3 1.2.3 環氧樹脂之分類 4 1.2.4 雙酚A型環氧樹脂的合成與製造 7 1.2.5 硬化劑之功能與簡介 9 1.2.6 硬化反應的基本理論 10 1.2.7 酸酐型硬化劑的特性 17 1.3 環氧樹脂的增韌 19 1.3.1 環氧樹脂增韌理論 19 1.3.2 環氧樹脂增韌劑之種類與原理 23 第二章 文獻回顧 27 第三章 實驗部分 31 3.1 實驗架構 31 3.2 實驗材料 32 3.3 實驗配方 33 3.4 試片製作 34 3.5 儀器原理及測定方法 35 3.5.1 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer,FTIR) 35 3.5.2 超導核磁共振光譜儀 (Nuclear Magnetic Resonance Spectroscopy, NMR) 36 3.5.3 電噴灑游離式質譜儀 (Electrospray Ionization-Mass,ESI-MS) 37 3.5.4 示差掃描量熱儀 (Differential Scanning Calorimerter,DSC) 38 3.5.5 熱重損失分析儀 (Thermal Gracimetric Analyzer,TGA) 38 3.5.6 應力與應變 (Stress and Strain) 39 3.5.7 三點彎曲試驗(Three-point deflection test) 40 3.5.8 衝擊試驗 (Impact Test) 41 3.5.9 熱動態機械分析(Dynamic Mechanical Analysis, DMA) 42 3.5.10 掃描式電子顯微鏡 (Scanning electronic microscopy,SEM ) 43 第四章 結果與討論 44 4.1 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer,FTIR) 44 4.2 超導核磁共振光譜儀 (Nuclear Magnetic Resonance Spectroscopy, NMR) 46 4.3 電噴灑游離式質譜儀 (Electrospray Ionization-Mass,ESI-MS) 48 4.4 示差掃描量熱儀 (Differential Scanning Calorimerter,DSC) 49 4.5 熱重損失分析儀 (Thermal Gracimetric Analyzer,TGA) 51 4.6 應力與應變 (Stress and Strain) 53 4.7 三點彎曲試驗(Three-point deflection test) 55 4.8 衝擊試驗 (Impact Test) 57 4.9 熱動態機械分析(Dynamic Mechanical Analysis, DMA) 59 4.10 掃描式電子顯微鏡 (Scanning electronic microscopy,SEM ) 63 第五章 結論 65 參考文獻 66

[1] C. May, Epoxy resins: chemistry and technology. CRC press, 1987.
[2] H. Lee and K. Neville, "Handbook of epoxy resins," 1967.
[3] C. B. Bucknall and A. H. Gilbert, "Toughening tetrafunctional epoxy resins using polyetherimide," Polymer, vol. 30, no. 2, pp. 213-217, 1989.
[4] F. Xu, H. Y. Liu, X. S. Du, Y. W. Mai, and W. G. Guo, "Effects of temperature and strain rate on fracture toughness of nano-rubber modified epoxies A2 - Ye, Lin," in Recent Advances in Structural Integrity Analysis - Proceedings of the International Congress (APCF/SIF-2014)Oxford: Woodhead Publishing, 2014, pp. 361-364.
[5] H. Shin, B. Kim, J.-G. Han, M. Y. Lee, J. K. Park, and M. Cho, "Fracture toughness enhancement of thermoplastic/epoxy blends by the plastic yield of toughening agents: A multiscale analysis," Composites Science and Technology, vol. 145, pp. 173-180, 6/16/ 2017.
[6] M. Gilbert, "Chapter 15 - Miscellaneous Vinyl Thermoplastics," in Brydson's Plastics Materials (Eighth Edition): Butterworth-Heinemann, 2017, pp. 427-440.
[7] P. S. Leevers et al., "High rate fracture toughness testing of thermoplastics," Polymer Testing, vol. 33, pp. 79-87, 2// 2014.
[8] A. Keller, H. M. Chong, A. C. Taylor, C. Dransfeld, and K. Masania, "Core-shell rubber nanoparticle reinforcement and processing of high toughness fast-curing epoxy composites," Composites Science and Technology, vol. 147, pp. 78-88, 7/28/ 2017.
[9] M. T. Demirci, N. Tarakçıoğlu, A. Avcı, A. Akdemir, and İ. Demirci, "Fracture toughness (Mode I) characterization of SiO2 nanoparticle filled basalt/epoxy filament wound composite ring with split-disk test method," Composites Part B: Engineering, vol. 119, pp. 114-124, 6/15/ 2017.
[10] F. Wang, L. T. Drzal, Y. Qin, and Z. Huang, "Enhancement of fracture toughness, mechanical and thermal properties of rubber/epoxy composites by incorporation of graphene nanoplatelets," Composites Part A: Applied Science and Manufacturing, vol. 87, pp. 10-22, 8// 2016.
[11] W. Thitsartarn, X. Fan, Y. Sun, J. C. C. Yeo, D. Yuan, and C. He, "Simultaneous enhancement of strength and toughness of epoxy using POSS-Rubber core–shell nanoparticles," Composites Science and Technology, vol. 118, pp. 63-71, 10/30/ 2015.
[12] H. Kimura, A. Matsumoto, K. Hasegawa, K. Ohtsuka, and A. Fukuda, "Epoxy resin cured by bisphenol A based benzoxazine," Journal of Applied Polymer Science, vol. 68, no. 12, pp. 1903-1910, 1998.
[13] W. J. Schultz, G. B. Portelli, and J. P. Tane, "Epoxy resin curing agent, process, and composition," ed: Google Patents, 1987.
[14] H. J. Sue, P. Puckett, J. Bertram, L. Walker, and E. Garcia‐Meitin, "Structure and property relationships in model diglycidyl ether of bisphenol‐a and diglycidyl ether of tetramethyl bisphenol‐a epoxy systems. I. Mechanical property characterizations," Journal of Polymer Science Part B: Polymer Physics, vol. 37, no. 16, pp. 2137-2149, 1999.
[15] B. Francis et al., "Cure kinetics, morphological and dynamic mechanical analysis of diglycidyl ether of bisphenol-A epoxy resin modified with hydroxyl terminated poly (ether ether ketone) containing pendent tertiary butyl groups," Polymer, vol. 47, no. 15, pp. 5411-5419, 2006.
[16] K. Huang et al., "A self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from tung oil fatty acids: Synthesis and properties," European Polymer Journal, vol. 70, pp. 45-54, 2015.
[17] S. L. Agius, M. Joosten, B. Trippit, C. H. Wang, and T. Hilditch, "Rapidly cured epoxy/anhydride composites: Effect of residual stress on laminate shear strength," Composites Part A: Applied Science and Manufacturing, vol. 90, pp. 125-136, 2016.
[18] S. Kumar, S. K. Samal, S. Mohanty, and S. K. Nayak, "Study of curing kinetics of anhydride cured petroleum-based (DGEBA) epoxy resin and renewable resource based epoxidized soybean oil (ESO) systems catalyzed by 2-methylimidazole," Thermochimica Acta.
[19] T. Yang, C. Zhang, J. Zhang, and J. Cheng, "The influence of tertiary amine accelerators on the curing behaviors of epoxy/anhydride systems," Thermochimica Acta, vol. 577, pp. 11-16, 2014.
[20] S. Kugler, K. Kowalczyk, and T. Spychaj, "Influence of synthetic and bio-based amine curing agents on properties of solventless epoxy varnishes and coatings with carbon nanofillers," Progress in Organic Coatings, vol. 109, pp. 83-91, 8// 2017.
[21] G. Wu, W. Ji, S. Sun, and H. Zhang, "Effect of Epoxy-Functionalised Core-shell Particles on Properties of Poly (butylenes Terephthalate)(PBT)," Polymers & Polymer Composites, vol. 16, no. 4, p. 271, 2008.
[22] B. C. Kim and S. W. Park, "Fracture toughness of the nano-particle reinforced epoxy composite," Composite Structures, vol. 86, no. 1, pp. 69-77, 2008.
[23] J. Ma, M.-S. Mo, X.-S. Du, P. Rosso, K. Friedrich, and H.-C. Kuan, "Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems," Polymer, vol. 49, no. 16, pp. 3510-3523, 2008.
[24] S. Mostovoy and E. Ripling, "Fracture toughness of an epoxy system," Journal of Applied Polymer Science, vol. 10, no. 9, pp. 1351-1371, 1966.
[25] V. R. Sastri, "6 - Commodity Thermoplastics: Polyvinyl Chloride, Polyolefins, and Polystyrene," in Plastics in Medical Devices (Second Edition)Oxford: William Andrew Publishing, 2014, pp. 73-120.
[26] D. W. Y. Wong, L. Lin, P. T. McGrail, T. Peijs, and P. J. Hogg, "Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres," Composites Part A: Applied Science and Manufacturing, vol. 41, no. 6, pp. 759-767, 6// 2010.
[27] G. Ragosta, M. Abbate, P. Musto, G. Scarinzi, and L. Mascia, "Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness," Polymer, vol. 46, no. 23, pp. 10506-10516, 2005.
[28] G. Gkikas, N.-M. Barkoula, and A. Paipetis, "Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy," Composites Part B: Engineering, vol. 43, no. 6, pp. 2697-2705, 2012.
[29] G. Levita, S. De Petris, A. Marchetti, and A. Lazzeri, "Crosslink density and fracture toughness of epoxy resins," Journal of materials science, vol. 26, no. 9, pp. 2348-2352, 1991.
[30] P. Xu, P. Cong, D. Li, and X. Zhu, "Toughness modification of hyperbranched polyester on epoxy asphalt," Construction and Building Materials, vol. 122, pp. 473-477, 9/30/ 2016.
[31] K. F. Lin and Y. D. Shieh, "Core‐shell particles designed for toughening the epoxy resins. II. Core‐shell‐particle‐toughened epoxy resins," Journal of applied polymer science, vol. 70, no. 12, pp. 2313-2322, 1998.
[32] K. Gam, M. Miyamoto, R. Nishimura, and H. Sue, "Fracture behavior of core‐shell rubber–modified clay‐epoxy nanocomposites," Polymer Engineering & Science, vol. 43, no. 10, pp. 1635-1645, 2003.
[33] S. Kunz-Douglass, P. W. R. Beaumont, and M. F. Ashby, "A model for the toughness of epoxy-rubber particulate composites," Journal of Materials Science, journal article vol. 15, no. 5, pp. 1109-1123, 1980.
[34] N. Amdouni, H. Sautereau, J. F. Gerard, F. Fernagut, G. Coulon, and J. M. Lefebvre, "Coated glass beads epoxy composites: influence of the interlayer thickness on pre-yielding and fracture properties," Journal of Materials Science, journal article vol. 25, no. 2, pp. 1435-1443, 1990.
[35] K.-C. Teng and F.-C. Chang, "Single-phase and multiple-phase thermoplastic/thermoset polyblends: 2. Morphologies and mechanical properties of phenoxy/epoxy blends," Polymer, vol. 37, no. 12, pp. 2385-2394, 1996/06/01 1996.
[36] A. J. Brunner et al., "The influence of silicate-based nano-filler on the fracture toughness of epoxy resin," Engineering Fracture Mechanics, vol. 73, no. 16, pp. 2336-2345, 11// 2006.
[37] N. Yu, Z. H. Zhang, and S. Y. He, "Fracture toughness and fatigue life of MWCNT/epoxy composites," Materials Science and Engineering: A, vol. 494, no. 1–2, pp. 380-384, 10/25/ 2008.
[38] B. Tang, X. Liu, X. Zhao, and J. Zhang, "Highly efficientin situtoughening of epoxy thermosets with reactive hyperbranched polyurethane," Journal of Applied Polymer Science, vol. 131, no. 16, pp. n/a-n/a, 2014.
[39] C. Acebo, X. Fernández-Francos, S. de la Flor, X. Ramis, and À. Serra, "New anhydride/epoxy thermosets based on diglycidyl ether of bisphenol A and 10-undecenoyl modified poly(ethyleneimine) with improved impact resistance," Progress in Organic Coatings, vol. 85, pp. 52-59, 2015.
[40] Q. Jin, J. M. Misasi, J. S. Wiggins, and S. E. Morgan, "Simultaneous reinforcement and toughness improvement in an aromatic epoxy network with an aliphatic hyperbranched epoxy modifier," Polymer, vol. 73, pp. 174-182, 2015.
[41] A. Bahrami et al., "Synergistic local toughening of high performance epoxy-matrix composites using blended block copolymer-thermoplastic thin films," Composites Part A: Applied Science and Manufacturing, vol. 91, pp. 398-405, 2016.
[42] X. Fei et al., "Efficient Toughening of Epoxy–Anhydride Thermosets with a Biobased Tannic Acid Derivative," ACS Sustainable Chemistry & Engineering, vol. 5, no. 1, pp. 596-603, 2017.

QR CODE