簡易檢索 / 詳目顯示

研究生: 薩米爾
Sameer Bachani
論文名稱: VNbMoTaWAl 和 TiZrNbTaFeN 高熵合金薄膜的機械特性、摩擦特性和腐蝕行為
Mechanical characteristics, tribological performance and corrosion behaviours of VNbMoTaWAl and TiZrNbTaFeN high-entropy alloy coatings
指導教授: 王朝正
Chaur-Jeng Wang
李志偉
Jyh-Wei Lee
口試委員: 郭俞麟
Yu-Lin Kuo
張麗君
Li-Chun Chang
駱碧秀
Bih-Show Lou
陳士勛
Shih-Hsun Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 143
中文關鍵詞: 機械特性摩擦學腐蝕耐火材料高熵合金
外文關鍵詞: Mechanical Characteristics, Tribology, Corrosion, Refractory materials, high-entropy alloy
相關次數: 點閱:189下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了不同的性質需求,尤其是在機械性質與腐蝕能力的改善,合金設計一直不斷地被開發。在這些研究之中,包含了許多著重在高溫強度以及熱穩定性的耐熱高熵合金塗層。本研究著重於耐熱VNbMoTaW、VNbMoTaWAl、TiZrNbTaFe及TiZrNbTaFeN高熵合金塗層之製作。使用原子力顯微鏡(AFM)、場發射掃描電子顯微鏡(FE-SEM)、納米壓痕器、X光繞射(XRD)、穿透式電子顯微鏡(TEM)和X光電子光譜儀(XPS),對高熵合金塗層進行分析。研究不同耐熱高熵合金塗層的機械特性、磨損和刮傷試驗,最後對高熵合金塗層進行腐蝕試驗,以揭示整體高熵合金塗層的特性和性能。
    本研究考量合金之熱穩定性選用耐熱VNbMoTaWl高熵合金為基礎,並選用3種不同Al添加量的VNbMoTaWAl高熵合金,使用脈衝直流磁控共濺系統進行高熵合金塗層之製作。當Al含量達8.5 at.%以上時,BCC結構得以維持;塗層的表面粗糙度、晶粒大小以及密度,均隨Al含量的增高而減少。由於固溶強化之作用,Al的添加可使硬度增加到18.1 GPa。含Al量2.4 at.%的VNbMoTaWAl塗層在0.5 M H2SO4溶液中具最佳耐腐蝕性,而在3.5 wt.% NaCl水溶液中,最佳的耐腐蝕性則為8.5 at.%鋁含量的VNbMoTaWAl塗層。本研究同時提出了VNbMoTaWAl塗層的等效電路。此外,在乾燥空氣500 °C和750 °C的3小時高溫氧化,500 ºC氧化後,4種塗層的BCC結構均保持不變且氧化動力學遵循拋物線率。含Al的耐熱高熵合金塗層的氧化速率低於VNbMoTaW合金。然而,耐熱高熵合金塗層在750 °C的空氣高溫氧化能力變差,可觀測到質量損失。
    本研究另以高功率脈衝磁體濺射(HiPIMS)採用不同氮氣流速比(RN2)進行耐熱TiZrNbTaFe和4種耐熱(TiZrNbTaFe)N高熵合金塗層的製作。隨著RN2的增加,HiPIMS峰值功率密度值也隨之增加。當RN2的添加量達32.0 N(10.0% RN2),非晶質相轉變為細柱狀FCC結晶微觀結構。塗層的沉積速率隨著N含量的增加而降低,由於金屬氮化物的形成和各種元素的固溶強化,含32.0 N (10.0% RN2)塗層的硬度最高,為36.2 GPa。在3.5 wt.% NaCl水溶液中,32.0 N (10.0% RN2)塗層也獲得了3.08 x 106 Ω.cm2的最佳耐腐蝕性。
    經由本研究性質與性能之分析,成果可應用於耐熱高熵合金塗層於合金設計與製程最佳化之規劃。除了在750 °C有較差的抗高溫氧化性之外,VNbMoTaWAl系列耐熱高熵合金塗層可應用於不同的結構應用;(TiZrNbTaFe)N系列耐熱高熵合金,則可應用於保護性硬塗層之製作。


    Alloys with different properties are continuously being designed for various different applications, particularly for improved mechanical properties and corrosion properties. Several studies of refractory high-entropy alloy (HEA) coatings have been performed, with focus on high temperature strength and stable thermal properties. The present work will focus on fabricating refractory VNbMoTaW, VNbMoTaWAl, TiZrNbTaFe, and TiZrNbTaFeN HEA coatings, and mechanically characterizing the HEA coatings by applying atomic force microscopy (AFM), field-emission scanning electron microscopy (FE-SEM), nanoindenter, X-ray diffractometer (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) to study the mechanical characteristics of different refractory HEA coatings and study tribological performance using wear and scratch test, and finally perform corrosion analysis on the HEA coatings, in order to reveal the overall refractory HEA coating properties and performances.
    The refractory VNbMoTaW and three refractory VNbMoTaWAl HEA coatings were grown using a pulsed direct current magnetron co-sputtering system. The refractory materials were selected due to their stable thermal properties and high temperature strength, while Al was selected due to its lightweight. The body-centered-cubic (bcc) structure was maintained after the addition of 8.5 at.% Al. The surface roughness, grain size and density of film decreased with higher Al content. The addition of Al element into VNbMoTaW coating can increase its hardness up to 18.1 GPa due to solution hardening effect. Best corrosion resistance in 0.5 M H2SO4 solution was obtained for 2.4 at.% Al contained VNbMoTaWAl coatings, whereas the best corrosion resistance in 3.5 wt.% NaCl solution was obtained for 8.5 at.% Al contained VNbMoTaWAl coatings. The equivalent circuit of the VNbMoTaWAl coating was also proposed. Further, high temperature oxidation was studied in dry air at 500 ºC and 750 ºC, respectively, with exposure time of 3 h. The bcc structure of four coatings remained after 500 ºC oxidation. The oxidation kinetics of four coatings at 500 ºC followed the parabolic rate law. The oxidation rate of the Al containing RHEAL coating were lower than those of equimolar VNbMoTaW alloy. The HEA coatings however had poor high temperature air oxidation at 750 ºC with mass loss observed.
    The refractory TiZrNbTaFe and four refractory (TiZrNbTaFe)N HEA coatings were grown using high power impulse magnetron sputtering (HiPIMS) at different nitrogen gas flow rate ratios (RN2). The HiPIMS peak power density values increased with increasing RN2. The phase transformation from amorphous to face-centered-cubic (fcc) structure was obtained after the addition of 32.0 at.% N (at 10.0% RN2), and the fcc structure exhibited a fine columnar microstructure and enhanced crystallinity. The deposition rate of the coating was found to decrease with increasing N content. The 32.0 at.% N (at 10.0% RN2) contained (TiZrNbTaFe)N coating had the highest hardness of 36.2 GPa primarily due to its high residual stress and secondarily due to formation of metal-nitride phase and solid solution strengthening of various elements. In 3.5 wt.% NaCl solution, the best corrosion resistance of 3.08 x 106 Ω.cm2 was obtained for (TiZrNbTaFe)N coatings grown at RN2 of 10.0%.
    The refractory HEA coating properties and performances analyzed during our study can be useful in the material design and optimization stage of product manufacturing. The refractory VNbMoTaWAl HEA coatings can be applied in various structural applications, however these have poor oxidation resistance in air at 750 ºC, while the refractory (TiZrNbTaFe)N HEA coatings can be used for protective hard coating applications.

    Chapter 1: Introduction 1 1.1 Concept of high-entropy alloys (HEAs) and multi-principal element alloys (MPEAs) 2 1.2 Refractory high-entropy alloy (RHEA) systems 3 1.3 Objectives 4 1.3.1 Broad objectives 4 1.3.2 Specific objectives 4 Chapter 2: Literature Review 6 2.1 History of alloying 7 2.2 Common alloying methods 7 2.3 Thin film technology 9 2.4 Synthesis and processing routes for HEA thin films 10 2.4.1 Direct current (DC) sputtering 11 2.4.2 Radio frequency (RF) sputtering 12 2.4.3 Medium frequency (MF) sputtering 13 2.4.4 High-power impulse magnetron sputtering (HiPIMS) 13 2.5 Refractory high-entropy alloys (RHEAs) 14 2.6 Mechanical properties (strengthening and hardening mechanisms) of RHEAs 15 2.6.1 Grain boundary strengthening 16 2.6.2 Strain hardnening 17 2.6.3 Solid solution strengthening 17 2.6.4 Martensitic transformation 18 2.6.5 Precipitation hardening 18 2.7 Nitridation 18 2.8 Tribological performance of RHEA 20 2.8.1 Mechanisms of wear 20 2.8.1.1 Adhesive wear 21 2.8.1.2 Abrasive wear 22 2.8.1.3 Fatigue wear 22 2.8.2 Friction 22 2.8.3 Lubrication 23 2.9 Corrosion behaviour of RHEAs 24 2.9.1 High temperature air-oxidation 24 2.9.1.1 Gibbs free energy 25 2.9.1.2 Kinetics of oxidation 26 2.9.1.2.1 Parabolic law 26 2.9.1.2.2 Linear law 27 2.9.1.2.3 Cubic law 27 2.9.1.2.4 Logarithmic law 27 2.9.1.3 Wagner`s theory of oxidation 28 2.9.2 Electrochemical corrosion 29 2.10 RHEA applications 30 2.10.1 High strength applications 30 2.10.2 Corrosion applications 30 Chapter 3: Methodology 32 3.1 Fabrication of refractory high-entropy alloy coatings 33 3.1.1 Deposition of refractory VNbMoTaW and VNbMoTaWAl coatings 33 3.1.2 Deposition of refractory TiZrNbTaFe and (TiZrNbTaFe)N coatings 34 3.2 Characterization of refractory high-entropy alloy coatings 35 3.2.1 Chemical composition 35 3.2.2 Surface and cross-sectional microstructure analysis 35 3.2.3 X-ray diffraction (XRD) analysis 36 3.2.4 X-ray reflectivity (XRR) analysis 37 3.2.5 Transmission electron microscope (TEM) analysis 37 3.2.6 X-ray photoelectron spectroscopy (XPS) analysis (for VNbMoTaW and VNbMoTaWAl coatings) 38 3.2.7 Hardness, elastic modulus and residual stress analysis 38 3.3 Tribological performance of refractory TiZrNbTaFe and (TiZrNbTaFe)N coatings 39 3.4 Electrical properties of refractory TiZrNbTaFe and (TiZrNbTaFe)N coatings 40 3.5 Corrosion behaviour of refractory high-entropy alloy coatings 40 3.6 Oxidation properties of refractory VNbMoTaW and VNbMoTaWAl coatings 40 Chapter 4: Results and discussions for VNbMoTaW and VNbMoTaWAl refractory high-entropy alloy coatings 42 4.1 Chemical composition, phase and microstructure of refractory VNbMoTaW and VNbMoTaWAl coatings 43 4.1.1 Chemical composition 43 4.1.2 Surface and cross-sectional microstructure analysis 44 4.1.3 X-ray diffraction (XRD) 47 4.1.4 X-ray reflectivity (XRR) 51 4.1.5 X-ray photoelectron spectroscopy (XPS) 52 4.1.6 Transmission electron microscope (TEM) 55 4.2 Mechanical properties 57 4.3 Corrosion behaviors of refractory VNbMoTaW and VNbMoTaWAl coatings 59 4.3.1 Potentiodynamic polarization measurements 59 4.3.1.1 0.5 M H2SO4 solution electrolyte 59 4.3.1.2 3.5 wt.% NaCl solution electrolyte 62 4.3.2 Electrochemical impedance analysis 64 Chapter 5: Results and discussions for oxidation of VNbMoTaW and VNbMoTaWAl refractory high-entropy alloy coatings in air 67 5.1 Oxidation kinetics 68 5.2 Analysis of refractory high-entropy alloy (RHEA) coating after oxidation tests 70 5.2.1 Chemical compositions 70 5.2.2 Cross-sectional microstructure analysis 71 5.2.3 X-ray diffraction (XRD) analysis 73 Chapter 6: Results and discussions on refractory TiZrNbTaFeN high-entropy alloy coatings by HiPIMS 76 6.1 Characteristics of HiPIMS discharge 77 6.2 Microstructure of refractory HEA and HEAN coatings 79 6.2.1 Chemical composition and deposition rate 79 6.2.2 Surface and cross-sectional microstructure analysis 81 6.2.3 X-ray diffraction (XRD) analysis 84 6.2.4 X-ray reflectivity (XRR) analysis 87 6.2.5 Transmission electron microscope (TEM) analysis 87 6.3 Mechanical and tribological performance of TiZrNbTaFe and (TiZrNbTaFe)N coatings 90 6.3.1 Hardness, elastic modulus and residual stress analysis 90 6.3.2 Wear test analysis 92 6.3.3 Scratch test analysis 95 6.4 Electrical properties of TiZrNbTaFe and (TiZrNbTaFe)N coatings 96 6.5 Corrosion characteristics of TiZrNbTaFe and (TiZrNbTaFe)N coatings 97 6.5.1 Potentiodynamic polarization measurements 97 6.5.2 Electrochemical impedance spectroscopy (EIS) 99 Chapter 7: Conclusions 102 Chapter 8: Future work 106 References 107

    [1] B. S. Murty, J. W. Yeh, S. Ranganathan and P. P. Bhattacharjee, “High-Entropy Alloys” (Second Edition), Elsevier Inc., 2019, ISBN 9780128160671.
    [2] B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent, “Microstructural developments in equiatomic multicomponent alloys”, Mater. Sci. Eng. A, 375-377 (2004) pp. 213-218.
    [3] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang, “Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes”, Adv. Eng. Mater., 6 (2004) pp. 299-303.
    [4] D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts”, Acta Mater., 122 (2017) pp. 448-511.
    [5] J. W. Yeh, S. K. Chen, J. W. Gan, S. J. Lin, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, “Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements”, Metall. Mater. Trans. A 35A (2004) pp. 2533-2536.
    [6] Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du and B. Li, “Design of non-equiatomic medium-entropy alloys”. Sci Rep 8, 1236 (2018).
    [7] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L.Chen and P. K. Liaw, “Solid-solution phase formation rules for multi-component alloys”, Adv. Eng. Mater., 10(6) (2008) pp. 534-538.
    [8] X. Yang and Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys”, Mater. Chem. Phys., 132 (2012) pp. 233-238.
    [9] A. Takeuchi and A. Inoue, “Quantitative evaluation of critical cooling rate for metallic glasses”, Mater. Sci. Eng. A, 304-306 (2001) pp. 446-451.
    [10] A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element”, Mater. Trans. 46 (2015) pp. 2817-2829.
    [11] J. W. Yeh and L. J. Santodonato, Physical Metallurgy. In: M. C. Gao, J. W. Yeh, P. K. Liaw and Y. Zhang (eds) “High-Entropy Alloys”. (2016) Springer, Cham.
    [12] J. W. Yeh, “Recent progress in high-entropy alloys”, Ann Chimie Sci Materiaux (Eur J Control), 31 (2006) pp. 633-648.
    [13] O. N. Senkov, G. B. Wilks, J. M. Scott and D. B. Miracle, “Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys”, Intermetallics. 19 (2011) pp. 698-706.
    [14] Y. D. Wu, Y. H. Cai, T. Wang, J. J. Si, J. Zhu, Y. D. Wang and X. D. Hui, “A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties”, Mater. Lett., 130 (2014) pp. 277-280.
    [15] G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J. P. Couzinié, L. Perrière, T. Chauveau and I. Guillot, “Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy”, Mater. Sci. Eng. A, 654 (2016) pp. 30-38.
    [16] M. F. Ashby, “Materials Selection in Mechanical Design” (Fourth Edition), Elsevier Inc., 2011, pp. 1-13, ISBN 9781856176637.
    [17] J. R. Davis (Editor), “ASM Specialty Handbook® Stainless Steels, ASM International”, 1994, pp. 3, ISBN 0871705036.
    [18] M. Ohring, “The Material Science of Thin Films”, Academic Press Limited, 1991, ISBN 0-12-524990-X.
    [19] S. B. Hung, C. J. Wang, Y. Y. Chen, J. W. Lee and C. L. Li, “Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings”, Surf. Coat. Technol., 375 (2019) pp. 802-809.
    [20] Y. Y. Chen, S. B. Hung, C. J. Wang, W. C. Wei and J. W. Lee, “High temperature electrical properties and oxidation resistance of V-Nb-Mo-Ta-W high entropy alloy thin films”, Surf. Coat. Technol. 375 (2019) pp. 854–863.
    [21] C. H. Lin, J. G. Duh and J. W. Yeh, “Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter”, Surf. Coat. Technol., 201 (2007) pp. 6304-6308.
    [22] K. Sarakinos, J. Alami and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art”, Surf. Coat. Technol., 204 (2010) pp. 1661-1684.
    [23] A. P. Ehiasarian, A. Vetushka, Y. A. Gonzalvo, G. Sáfrán, L. Székely and P. B. Barna, “Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films”, J. Appl. Phys., 109 (2011) 104314.
    [24] Y. Yuan, L. Yang, Z. Liu and Q. Chen, “High power impulse magnetron sputtering and its applications”, Plasma Sci. Technol., 20 (2018) 065501.
    [25] C. Y. Lu, W. Diyatmika, B. S. Lou, Y. C. Lu, J. G. Duh and J. W. Lee, “Influences of target poisoning on the mechanical properties of TiCrBN thin films grown by a superimposed high power impulse and medium-frequency magnetron sputtering”, Surf. Coat. Technol., 332 (2017) pp. 86-95.
    [26] Y. P. Purandare, A. P. Ehiasarian and P. E. Hovsepian, “Target poisoning during CrN deposition by mixed high power impulse magnetron sputtering and unbalanced magnetron sputtering technique”, J. Vac. Sci. Technol. A, 34 (2016) 041502.
    [27] Y. C. Hsiao, J. W. Lee, Y. C. Yang and B. S. Lou, “Effects of duty cycle and pulse frequency on the fabrication of AlCrN thin films deposited by high power impulse magnetron sputtering”, Thin Solid Films, 549 (2013) pp. 281-291.
    [28] M. Lattemann, U. Helmersson and J. E. Greene, “Fully dense, non-faceted 111-textured high power impulse magnetron sputtering TiN films grown in the absence of substrate heating and bias”, Thin Solid Films, 518 (2010) pp. 5978-5980.
    [29] Z. Tang, T. Yuan, C. W. Tsai, J. W. Yeh, C. D. Lundin and P. K. Liaw, “Fatigue behaviour of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy”, Acta Mater. 99 (2015) pp. 247-258.
    [30] S. Q. Xia, X. Yang, T. F. Yang, S. Liu and Y. Zhang, “Irradiation resistance in AlxCoCrFeNi high entropy alloys”, JOM. 67 (2015) pp. 2340-2344.
    [31] A. Obeydavi, A. Shafyei, A. Rezaeian, P. Kameli and J. W. Lee, “Microstructure, mechanical properties and corrosion performance of Fe44Cr15Mo14Co7C10B5Si5 thin film metallic glass deposited by DC magnetron sputtering”, J. Non-Cryst. Solids, 527 (2020) 119718.
    [32] P. Cui, W. Li, P. Liu, K. Zhang, F. Ma, X. Chen, R. Feng and P. K. Liaw, “Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films”, J. Alloys Compd., 834 (2020) 155063.
    [33] M. C. Gao, J. W. Yeh, P. K. Liaw, Y. Zhang (Editors), “High-Entropy Alloys Fundamentals and Applications”, Springer International Publishing Switzerland, 2016, ISBN 978-3-319-27011-1.
    [34] W. D. Callister, Jr., “Material Science and Engineering An Introduction”, John Wiley & Sons, Inc., 2007, ISBN 978-0-471-73696-7.
    [35] W. H. Liu, Y. Wu, J. Y. He, T. G. Nieh and Z. P. Lu, “Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy”, Scr. Mater., 68 (2013) pp. 526-529.
    [36] M. Roy (Editor), “Surface Engineering for Enhanced Performance against Wear”, Springer-Verlag Wien, 2013, ISBN 978-3-7091-0100-1.
    [37] H.O. Pierson, “Handbook of Refractory Carbides and Nitrides”, Noyes, New Jersey (1996).
    [38] D. Y. Wang, C. L. Chang, C. H. Hsu and H. N. Lin, “Synthesis of (Ti, Zr)N hard coatings by unbalanced magnetron sputtering”, Surf. Coat. Technol., 130 (2000) pp. 64-68.
    [39] V. M. Prokhorov, E. V. Gladkikh, L. A. Ivanov, V. V. Aksenenkov and A. N. Kirichenko, “Composition, structure and mechanical properties of (Ti-Hf)N coatings on titanium alloy”, Tech. Phys., 64 (2019) pp. 654-659.
    [40] V. M. Beresnev, O. V. Sobol, S. S. Grankin, U. S. Nemchenko. V. Y. Novikov, O. V. Bondar, K. O. Belovol, O. V. Maksakova and D. K. Eskermesov, “Physical and mechanical properties of (Ti-Zr-Nb)N coatings fabricated by vacuum-arc deposition”, Inorg. Mater. Appl. Res., 7 (2016) pp. 388-394.
    [41] C. Sha, Z. Zhou, Z. Xie and P. Munroe, “FeMnNiCoCr-based high entropy alloy coatings: effect of nitrogen additions on microstructural development, mechanical properties and tribological performance”, Appl. Surf. Sci., 507 (2020) 145101.
    [42] Y. Xu, G. Li and Y. Xia, “Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS”, Appl. Surf. Sci., 523 (2020) 146529.
    [43] L. Chen, W. Li, P. Liu, K. Zhang, F. Ma, X. Chen, H. Zhou and X. Liu, “Microstructure and mechanical properties of (AlCrTiZrV)Nx high-entropy alloy nitride films by reactive magnetron sputtering”, Vacuum, 181 (2020) 109706.
    [44] Y. C. Lin, S. Y. Hsu, R. W. Song, W. L. Lo, Y. T. Lai, S. Y. Tsai and J. G. Duh, “Improving the hardness of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20)N coatings via tuning substrate temperature and bias for anti-wear applications”, Surf. Coat. Technol., 403 (2020) 126417.
    [45] W. H. Kao, Y. L. Su, J. H. Horng and C. M. Wu, “Structure, mechanical properties and thermal stability of nitrogen-doped TaNbSiZrCr high entropy alloy coatings and their application to glass moulding and micro-drills”, Surf. Coat. Technol., 405 (2021) 126539.
    [46] S. H. Elder, F. J. DiSalvo, L. Topor, A. Navrotsky, “Thermodynamics of ternary nitride formation by ammonolysis: Application to lithium molybdenum nitride (LiMoN2), sodium tungsten nitride (Na3WN3), and sodium tungsten oxide (Na3WO3N)”, Chem. Mater., (1993) pp. 1545-1553.
    [47] R. Shu, E. M. Paschalidou, S. G. Rao, J. Lu, G. Greczynski, E. Lewin, L. Nyholm, A. Febvrier and P. Eklund, “Microstructure and mechanical, electrical, and electrochemical properties of sputter-deposited multicomponent (TiNbZrTa)Nx coatings”, Surf. Coat. Technol., 389 (2020) 125651.
    [48] S. A. Firstov, V. F. Gorban’, N. I. Danilenko, M. V. Karpets, A. A. Andreev and E. S. Makarenko, “Thermal stability of superhard nitride coatings from high-entropy multicomponent Ti-V-Zr-Nb-Hf alloy”, Powder Metall. Met. Ceram., 52 (2014) pp. 560-566.
    [49] A. D. Pogrebnjak, I. V. Yakushchenko, A. A. Bagdasaryan, O. V. Bondar, R. Krause-Rehberg, G. Abadias, P. Chartier, K. Oyoshi, Y. Takeda, V. M. Beresnev and O. V. Sobol, “Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions”, Mater. Chem. Phys., 147 (2014) pp. 1079-1091.
    [50] K. Johansson, L. Riekehr, S. Fritze and E. Lewin, “Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition”, Surf. Coat. Technol., 349 (2018) pp. 529-539.
    [51] J. K. Jatiyar, P. Ramkumar, T. V. V. L. N. Rao and J. P. Davim (Editors), “Tribology in Materials and Applications”, Springer Nature Switzerland, 2020, ISBN 978-3-030-47450-8.
    [52] P. J. Blau (Volume Chairman), “Volume 18 Friction, Lubrication and Wear Technology”, ASM Handbook, ASM International, 1992, ISBN 0-87170-377-7.
    [53] A. Gåård, N. Hallbäck, P. Krakhmalev and J. Bergström, “Temperature effects on adhesive wear in dry sliding contacts”, Wear, 268 (2010) pp. 968-975.
    [54] T. E. Perez, “Corrosion in the oil and gas industry: An increasing challenge for materials”, JOM, 65 (2013) pp.1033-1042.
    [55] F. H. Scott, G. C. Wood and M. G. Hobby, “A comparison of the oxidation behavior of Fe-Cr-Al, Ni-Cr-Al, and Co-Cr-Al alloys”, Oxid. Metals, 3 (1971) pp. 103-113
    [56] A. Xia and R. Franz, “Thermal stability of MoNbTaVW high entropy alloy thin films”, Coatings, 10 (2020) 941.
    [57] I. Barin, “Thermochemical Data of Pure Substances”, 3rd ed., VCH, New York, 1995.
    [58] L. Luciano and M. Pedeferri, “Corrosion Science and Engineering”, Springer Nature Switzerland, 2018, ISBN 978-3-319-97624-2.
    [59] W. Kai, C. C. Li, F. P. Cheng, K. P. Chu, R. T. Huang, L. W. Tsay and J. J. Kai, “Air-oxidation of FeCoNiCr-based quinary high-entropy alloys at 700-900 ºC”, Corros. Sci., 121 (2017) pp.116-125.
    [60] N. Birks, G. H. Meter and F. S. Pettit, “Introduction to the high-temperature oxidation of metals”, Cambridge University Press, USA, 2006, ISBN 978-0-521-48517-3.
    [61] A. Anupam, S. Kumar, N. M. Chavan, B. S. Murty and R. S. Kottada, “First report on cold-sprayed AlCoCrFeNi high-entropy alloy and its isothermal oxidation”, JMR, 2019, pp. 1-11.
    [62] N. Li, C. L. Jia, Z. W. Wang, L. H. Wu, D. R. Ni, Z. K. Li, H. M. Fu, P. Xue, B. L. Xiao, Z. Y. Ma, Y. Shao and Y. L. Chang, “Achieving a High-Strength CoCrFeNiCu High-Entropy Alloy with an Ultrafine-Grained Structure via Friction Stir Processing”, Acta Metall. Sin.-Engl. Lett. 33(7) (2020) pp. 947-956.
    [63] C. Lee, Y. Chou, G. Kim, M. C. Gao, K. An, J. Brechtl, C. Zhang, W. Chen, J. D. Poplawsky, G. Song, Y. Ren, Y. C. Chou and P. K. Liaw, “Lattice-Distortion-Enhanced Yield Strength in a Refractory High-Entropy Alloy”, Adv. Mater. 2020, 32, 2004029.
    [64] J. Brechtl, S. Chen, C. Lee, Y. Shi, R. Feng, X. Xie, D. Hamblin, A. M. Coleman, B. Straka, H. Shortt, R. J. Spurling and P. K. Liaw, “A Review of the Serrated-Flow Phenomenon and Its Role in the Deformation Behavior of High-Entropy Alloys”, Metals 2020, 10, pp. 1101.
    [65] Y. L. Chou, J. W. Yeh and H. C. Shih, “The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments”, Corros. Sci. 52 (2010) pp. 2571-2581.
    [66] H. T. Hsueh, W. J. Shen, M. H. Tsai and J. W. Yeh, “Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100-xNx”, Surf. Coat. Technol. 206 (2012) pp. 4106-4112.
    [67] C. T. Chang, Y. C. Yang, J. W. Lee and B. S. Lou, “The influence of deposition parameters on the structure and properties of aluminum nitride coatings deposited by high power impulse magnetron sputtering”, Thin Solid Films, 572 (2014) pp. 161-168.
    [68] J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer and J. R. Michael, “Scanning Electron Microscopy and X-ray Microanalysis”, Plenum Press, 2003. pp. 404.
    [69] S. K. Bachani, C. J. Wang, B. S. Lou, L. C. Chang and J. W. Lee, “Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content”, Surf. Coat. Technol., 403 (2020) 126351.
    [70] J. H. Huang, C. H. Lin and G. P. Yu, “Texture evolution of vanadium nitride thin films”, Thin Solid Films, 688 (2019) 137415.
    [71] J. H. Lu, J. W. Luo, S. R. Chung and B. Y. Chen, “Antireflection coatings with SiOx-TiO2 multilayer structures”, Jpn. J. Appl. Phys., 53 (2014) 11RA06.
    [72] M.P. Seah, “Summary of ISO/TC 201 Standard: VII ISO 15472:2001 – surface chemical analysis – x-ray photoelectron spectrometers – calibration of energy scales”, Surf. Interface. Anal. 31 (2001) pp. 721-723.
    [73] G. Greczynski, I. Petrov, J. E. Greene, and L. Hultman, “Al capping layers for nondestructive X-ray photoelectron spectroscopy analyses of transition-metal nitride thin films”, J. Vac. Sci. Technol. A 33 (2015) 05E101.
    [74] G. G. Stoney, “The tension of metallic films deposited by electrolysis”, Proc. R. Soc. London, Ser. A, 82 (1909) pp. 172-175.
    [75] W. A. Brantley, “Calculated elastic constants for stress problems associated with semiconductor devices”, J. Appl. Phys., 44.534 (1973) pp. 534-535.
    [76] ASTM C1624, “Standard test method for adhesion strength and mechanical failure modes of ceramic coatings by quantitative single point scratch testing”, ASTM International, 2015.
    [77] E. E. Stansbury, R. A. Buchanan, “Fundamentals of Electrochemical Corrosion”, ASM International, 2000.
    [78] J. H. Westbrook, R. L. Fleischer, “Crystal Structures of Intermetallic Compounds”, John Wiley & Sons Ltd., New York, 2000. pp. 56.
    [79] Z. Tang, M. C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y.Q. Cheng, Y. W. Zhang, K. A. Dahmen, P. K. Liaw and T. S. Egami, “Aluminum alloying effects on lattice types, microstructures and mechanical behaviour of high-entropy alloy systems”, JOM. 65 (2013) pp. 1848-1858.
    [80] G. Ghosh and M. Asta, “First-principles calculation of structural energetics of Al-TM (TM = Ti, Zr, Hf) intermetallics”, Acta Mater. 53 (2005) pp. 3225-3252.
    [81] G. Ghosh, A. V. D. Walle and M. Asta, “First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al-TM (TM = Ti, Zr and Hf) systems: A comparison of cluster expansion and supercell methods”, Acta Mater. 56 (2008) pp. 3202-3221.
    [82] B. D. Cullity and S. R. Stock, “Elements of X-ray Diffraction”, 3rd ed. Prentice-Hall, New Jersey, 2001.
    [83] O. N. Senkov, S. V. Senkova and C. Woodward, “Effect of aluminium on the microstructure and properties of two refractory high-entropy alloys”, Acta Mater. 68 (2014) pp. 214-228.
    [84] T. D. Shen, J. Z. Zhang and Y. S. Zhao, “What is the theoretical density of a nanocrystalline material?”, Acta Mater. 56 (2008) pp. 3663-3671.
    [85] P. W. Brown and F. J. Worzala, “Resistivity and lattice parameter variations in Nb2Al type sigma phases”, J. Mater. Sci. 11 (1976) pp. 760-766.
    [86] A. Boulineau, J. M. Joubert and R. Cerny, “Structural characterization of the Ta-rich part of the Ta Al system”, J. Solid State Chem. 179 (2006) pp. 3385-3393.
    [87] O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang and P. K. Liaw, “Refractory high-entropy alloys”, Intermetallics. 18 (2010) pp. 1758-1765.
    [88] O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle and C. F. Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy”, J. Alloys Compd. 509 (2011) pp. 6043-6048.
    [89] J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”, J. Chastain, Ed. Perkin-Elmer Corp., Eden Prairie, MN, 1992.
    [90] G. Beamson and D. Briggs, “High Resolution XPS of Organic Polymers – The Scienta ESCA300 Database”, Wiley Interscience, 1992.
    [91] R. H. Burns, F. S. Shuker and P. E. Manning, “Industrial Applications of Corrosion-Resistant Tantalum, Niobium, and Their Alloys, in Refractory Metals and Their Industrial Applications”, ed. R.E. Smallwood (West Conshohocken, PA: ASTM International, 1984), pp. 50-69.
    [92] K. Djebaili, Z. Mekhalif, A. Boumaza and A. Djelloul, “XPS, FTIR, EDX, and XRD Analysis of Al2O3 Scales Grown on PM2000 Alloy”, J. Spectrosc. (2015) pp. 1-16.
    [93] M. Kazan, B. Ruffle, Ch. Zgheib and P. Masri, “Oxygen behavior in aluminum nitride”, J. App. Phys. 98 (2005) 103529.
    [94] T. Mattila and R. M. Nieminen, “Point-defect complexes and broadband luminescence in GaN and AlN”, Phys. Rev. B 55 (1997) pp. 9571-9576.
    [95] W. Li, P. Liu and P. K. Liaw, “Microstructures and properties of high-entropy alloy films and coatings: a review”, Mater. Res. Lett. 6 (2018) pp. 199-229.
    [96] L. L. Xiao, Z. Q. Zheng, S. W. Guo, P. Huang and F. Wang, “Ultra-strong nanostructured CrMnFeCoNi high entropy alloys”, Materials & Design 194 (2020) 108895.
    [97] Y. S. Kim, H. J. Park, S. C. Mun, E. Jumaev, S. H. Hong, G. Song, J. T. Kim, Y. K. Park, K. S. Kim, S. I. Jeong, Y. H. Kwon and K. B. Kim, “Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering”, J. Alloys Compd. 797 (2019) pp. 834-841.
    [98] B. S. Lou, I. Moirangthem, J. W. Lee, “Fabrication of tungsten nitride thin films by superimposed HiPIMS and MF system: Effects of nitrogen flow rate”, Surf. Coat. Technol. 393 (2020) 125743.
    [99] A. Xia, A. Togni, S. Hirn, G. Bolelli, L. Lusvarghi and R. Franz, “Angular-dependent deposition of MoNbTaVW HEA thin films by three different physical vapor deposition methods”, Surf. Coat. Technol. 385 (2020) 125356.
    [100] W. R. Wang, W. L. Wang, S. C. Wang, Y. C. Tsai, C. H. Lai and J. W. Yeh, “Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys”, Intermetallics. 26 (2012) pp. 44-51.
    [101] C. Li, J. C. Li, M. Zhao and Q. Jiang, “Effect of aluminium contents on microstructure and properties of AlxCoCrFeNi alloys”, J. Alloys Compd. 504S (2010) pp. S515-S518.
    [102] A. Leyland and A. Matthews, “On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour”, Wear. 246 (2000) pp. 1-11.
    [103] C. L. Li, C. Y. Chung, B. S. Lou, J. W. Lee and J. P. Chu, “Effect of nitrogen content on the corrosion resistance of Zr-Ni-Al-Si thin film metallic glass”, Int. J. Electrochem. Sci. 12 (2017) pp. 12074-12083.
    [104] C. P. Lee, C. C. Chang, Y. Y. Chen, J. W. Yeh and H. C. Shih, “Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments”, Corros. Sci. 50 (2008) pp. 2053-2060.
    [105] C. P. Lee, Y. Y. Chen, C. Y. Hsu, J. W. Yeh and H. C. Shih, “Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid”, Thin Solid Films. 517 (2008) pp. 1301-1305.
    [106] P. C. Wang, J. W. Lee, Y. C. Yang and B. S. Lou, “Effects of silicon contents on the characteristics of Zr–Ti–Si–W thin film metallic glasses”, Thin Solid Films 618 (2016) pp. 28–35.
    [107] C. Vargel, “Corrosion of aluminium”, Elsevier BV, 2004, Amsterdam, Netherlands.
    [108] J. R. Davis, ed.: “ASM specialty handbook: Aluminum and aluminum alloys”, ASM International, 1993, Materials Park, OH., pp. 579-622.
    [109] E. A. Gulbransen, K. F. Andrew and F. A. Brassart, “Oxidation of Molybdenum 550º to 1700ºC”, J. Electrochem. Soc., 110 (1963) pp. 952-959.
    [110] F. Magnus, O. B. Sveinsson, S. Olafsson and J. T. Gudmundsson, “Current-voltage-time characteristics of the reactive Ar/N2 high power impulse magnetron sputtering discharge”, J. Appl. Phys. 110 (2011) 083306.
    [111] U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian and J. T. Gudmundsson, “Ionized physical vapor deposition (IPVD): a review of technology and applications”, Thin Solid Films, 513 (2006) pp. 1-24.
    [112] X. Jiang, F. C. Yang, W. C. Chen, J. W. Lee and C. L. Chang, “Effect of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlSiN thin films prepared by high power impulse magnetron sputtering”, Surf. Coat. Technol., 320 (2017) pp. 138-145.
    [113] M. Ohring, “Thin-film evaporation processes”, Mater. Sci. Thin Film., (2002) pp. 95-144.
    [114] K. von Fieandt, L. Riekehr, B. Osinger, S. Fritze and E. Lewin, “Influence of N content on structure and mechanical properties of multi-component Al-Cr-Nb-Y-Zr based thin films by reactive magnetron sputtering”, Surf. Coat. Technol., 389 (2020) 125614.
    [115] C. H. Lai, S. J. Lin, J. W. Yeh and S. Y. Chang, “Preparation and characterization of AlCrTaTiZr multi-element nitride coatings”, Surf. Coat. Technol., 201 (2006) pp. 3275-3280.
    [116] A. Kirnbauer, A. Kretschmer, C. M. Koller, T. Wojcik, V. Paneta, M. Hans, J. M. Schneider, P. Polcik and P. H. Mayrhofer, “Mechanical properties and thermal stability of reactively sputtered multi-principal-metal Hf-Ta-Ti-V-Zr nitrides”, Surf. Coat. Technol., 389 (2020) 125674.
    [117] J. Musil and H. Poláková, “Hard nanocomposite Zr-Y-N coatings, correlation between hardness and structure”, Surf. Coat. Technol., 127 (2000) pp. 99-106.
    [118] B. Ren, Z. Shen and Z. Liu, “Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering”, J. Alloys Compd., 560 (2013) pp. 171-176.
    [119] A. Xia, R. Dedoncker, O. Glushko, M. J. Cordill, D. Depla and R. Franz, “Influence of the nitrogen content on the structure and properties of MoNbTaVW high entropy alloy thin films”, J. Alloys Compd., 850 (2021) 156740.
    [120] X. H. Yan, J. S. Li, W. R. Zhang and Y. Zhang, “A brief review of high-entropy films”, Mater. Chem. Phys., 210 (2018) pp. 12-19.
    [121] W. J. Chou, G. P. Yu and J. H. Huang, “Mechanical properties of TiN thin film coatings on 304 stainless steel substrates”, Surf. Coat. Technol., 149 (2002) pp. 7-13.
    [122] C. H. Ma, J. H. Huang and H. Chen, “Nanohardness of nanocrystalline TiN thin films”, Surf. Coat. Technol., 200 (2006) pp. 3868-3875.
    [123] Z. B. Qi, F. P. Zhu, Z. T. Wu, B. Liu, Z. C. Wang, D. L. Peng and C. H. Wu, “Influence of yttrium addition on microstructure and mechanical properties of ZrN coatings”, Surf. Coat. Technol., 231 (2013) pp. 102-106.
    [124] M. R. Jones, B. L. Nation, J. A. Wellington-Johnson, J. F. Curry, A. B. Kustas, P. Lu, M. Chandross and N. Argibay, “Evidence of inverse Hall-Petch behavior and low friction and wear in high entropy alloys”, Sci. Rep. 10 (2020) 10151.
    [125] J. Musil, F. Kunc, H. Zeman and H. Poláková, “Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings”, Surf. Coat. Technol., 154 (2002) pp. 304-313.
    [126] M. M. M. Bilek and D. R. McKenzie, “A comprehensive model of stress generation and relief processes in thin films deposited with energetic ions”, Surf. Coat. Technol., 200 (2006) pp. 4345-4354.
    [127] C. H. Lai, K. H. Cheng, S. J. Lin and J. W. Yeh, “Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings”, Surf. Coat. Technol., 202 (2008) pp. 3732-3738.
    [128] V. Braic, A. Vladescu, M. Balaceanu, C. R. Luculescu and M. Braic, “Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings”, Surf. Coat. Technol., 211 (2012) pp. 117-121.
    [129] K. H. Cheng, C. H. Lai, S. J. Lin and J. W. Yeh, “Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering”, Thin Solid Films, 519 (2011) pp. 3185-3190.
    [130] J. F. Archard, “Contact and rubbing of flat surfaces”, J. Appl. Phys., 24 (1953) pp. 981.
    [131] Y. C. Yang, C. T. Chang, Y. C. Hsiao, J. W. Lee and B. S. Lou, “Influence of high power impulse magnetron sputtering pulse parameters on the properties of aluminum nitride coatings”, Surf. Coat. Technol., 259 (2014) pp. 219-231.
    [132] J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury and T. Zheleva, “Epitaxial growth of TiN films on (100) silicon substrates by laser physical vapor deposition”, Appl. Phys. Lett., 61 (1992) pp. 1290.
    [133] Y. F. Xu, Y. F. Xiao, D. Q. Yi, H. Q. Liu, L. Wu and J. Wen, “Corrosion behavior of Ti-Nb-Ta-Zr-Fe alloy for biomedical applications in Ringer’s solution”, Trans. Nonferrous Met. Soc. China, 25 (2015) pp. 2556-2563.

    QR CODE