簡易檢索 / 詳目顯示

研究生: 李异翃
Yi-Hong Li
論文名稱: 抑制劑添加對異質銲接件 加凡尼腐蝕之作用
Effect of Corrosion Inhibitors Addition on Galvanic Corrosion of Dissimilar Weldment
指導教授: 王朝正
Chaur-jeng Wang
口試委員: 王朝正
Chaur-jeng Wang
曾傳銘
Chuan-Ming Tseng
陳士勛
Shih-Hsun Chen
梁煥昌
Huan-Chang Liang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 96
中文關鍵詞: 異質銲接件熱影響組織加凡尼腐蝕腐蝕抑制劑
外文關鍵詞: dissimilar weldments, heat-affected microstructures, galvanic corrosion, corrosion inhibitors
相關次數: 點閱:325下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用實施覆銲(IN-52M)之異質銲接件(A508/IN-182/316L-308L緩衝層)浸泡於靜滯鹽水環境並添加腐蝕抑制劑。透過電化學儀器分析合金在環境之腐蝕特性,以及配合浸泡試驗之表面觀察、腐蝕產物之成分分析與材料損失量,探討腐蝕機制及腐蝕損失與電化學相關性。
    實驗結果顯示,在鹽水環境中,316L、308L、IN-182、IN-52M的鉻含量足以在金屬表面形成穩定的鈍化膜,以至於有相近的腐蝕電位及較低的腐蝕電流。A508在本異質銲接件系統中有最大的腐蝕電流密度及最低的腐蝕電位,與其它合金相差達 500 mV至600 mV,因此A508為陽極金屬。再者,A508熱影響區之微觀組織為每道熱影響組織依序彼此相連排列,其中耐蝕性較差之組織易成為局部陽極區,加上異質界面的成分急劇變化產生加凡尼腐蝕,使熱影響區產生規律之腐蝕形貌以及在兩銲珠之交界處有最大的腐蝕深度。在距離異質界面較遠的A508母材受加凡尼腐蝕影響不明顯,為均勻腐蝕。隨時間增長,A508表面的腐蝕產物沉積量增加,阻礙腐蝕環境與材料表面接觸,使其腐蝕速率逐漸減緩。A508添加鉬酸鈉比硝酸鈉抑制劑至6000 ppm : 4000 ppm 時有鈍化產生,腐蝕電位由 -916 mVSCE 提升至 -388 mVSCE,接近316L、308L、IN-182、IN-52M的腐蝕電位,減緩加凡尼腐蝕。腐蝕抑制劑添加不足時,A508表面出現不受異質界面加凡尼腐蝕影響,隨機分布的蝕孔。浸泡足夠的腐蝕抑制劑(鉬酸鈉:硝酸鈉 = 6000 ppm : 4000 ppm),在A508表面生成薄且具保護性之氧化鐵及局部的鐵與鉬酸根之錯合物,具有抑制效果。


    In this study, dissimilar weldments(A508/IN-182/316L-308L buttering) that were carried out overlay welding(IN-52M) were immersed in with or without inhibitors additional of salt water environment. The corrosion characteristics of the alloy were analyzed by electrochemical instruments. The immersion test was adopted to investigate the corroded appearance, the composition of the corrosion products and the corrosion depth. Meanwhile, the corrosion mechanism and the correlation between corrosion loss and electrochemistry were discussed.
    In the experimental results, the chromium and nickel content of 316L, 308L, IN-182, and IN-52M were sufficient to form a stable passivation film on the metal surface. As a result, it had similar corrosion potential and lower corrosion current in the salt water environment. A508 had the lowest corrosion potential in this dissimilar weldment system, the potential different was 500 mV to 600 mV lower than other alloys. Furthermore, A508 has a larger corrosion current density. Therefore. A508 was an anode metal. The appearance of the A508 heat-affected zone was composed of heat-affected microstructures connected and arranged in sequence. Among them, the portions with poor corrosion resistance was easy to become a local anode zone. And the instantaneous change in composition of the dissimilar interface produced galvanic corrosion. It caused heat-affected zone had a regular corrosion morphology and the maximum corrosion depth at the junction of the 2 weld beads. However, the A508 base metal that was far away from A508/IN-182 interface was not significantly affected by galvanic corrosion. As the development of corrosion behavior, corrosion products were kept producing, and deposited on the surface of A508, which hindered the contact between the environment and the surface of the material. As a result, its corrosion rate was gradually slowed down. The passivation was observed at the ratio of Na2MoO4 and NaNo2 inhibitors was 6000 ppm : 4000 ppm. Furthermore, the corrosion potential of A508 was increased to -388 mVSCE, and it was closed to the corrosion potential of 316L, 308L, IN-182, and IN-52M, which slowed down the galvanic corrosion. In contrast, the insufficient addition of corrosion inhibitors caused pitting corrosion on the surface of A508, and it was not affected by galvanic corrosion at the dissimilar interface. Sufficient corrosion inhibitors(Na2MoO4 : NaNo2 = 6000 ppm : 4000 ppm) would formed thin and protective Fe2O3 and local complex of iron and molybdate were observed on the immersed surface.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 前言 1 第二章 文獻回顧 3 2.1 核電廠反應爐壓力容器之組件材料應用 3 2.2 A508 及 316L 母材銲接後之熱影響組織 5 2.2.1 A508 低合金鋼 5 2.2.2 316L 不銹鋼 9 2.3 加凡尼腐蝕 12 2.3.1 加凡尼腐蝕原理 12 2.3.2 混合動電位 13 2.3.3 面積效應 14 2.3.4 距離效應 14 2.3.5 異質銲接件 15 2.4 腐蝕抑制劑 21 2.4.1 種類與原理 21 2.4.2 鉬酸鹽與硝酸鹽抑制劑 25 第三章 實驗方法 28 3.1 實驗流程 28 3.2 試片組成 29 3.3 試片製備 31 3.4 電化學試驗 32 3.5 浸泡試驗 34 3.6 腐蝕深度量測 36 3.7 主要實驗設備與分析方法 38 第四章 結果與討論 40 4.1 鹽水浸泡 40 4.1.1 試片外觀 40 4.1.2 異質界面之成分變化 49 4.1.3 腐蝕深度 51 4.1.3.1 均勻腐蝕 51 4.1.3.2 A508 狹縫觀察 56 4.1.4 覆銲層異質銲接件之電化學分析 59 4.1.4.1 各合金之動電位極化 59 4.1.4.2 局部合金組合之動電位極化 61 4.1.5 腐蝕機制 63 4.2 添加抑制劑 66 4.2.1 電化學分析 66 4.2.1.1 A508 於不同濃度之電化學分析 66 4.2.1.2 316L、IN-52M 及 IN-182 之動電位極化 68 4.2.2 鹽水添加腐蝕抑制劑之浸泡試驗 71 4.2.3 抑制劑之作用機制 76 第五章 結論 79 參考文獻 80

    [1] 台灣電力公司,核一廠除役計畫,參考來源:https://www.aec.gov.tw/,2021年6月。
    [2] W. Jiang, Y. Luo, B. Y. Wang, S. T. Tu, and J. M. Gong, "Residual stress reduction in the penetration nozzle weld joint by overlay welding." Materials and Design 60, p. 443-450, 2014.
    [3] K. S. Kim, H. J. Lee, B. S. Lee, I. C. Jung, and K. S. Park, "Residual stress analysis of an Overlay weld and a repair weld on the dissimilar Butt weld." Nuclear Engineering and Design, 239(12), p. 2771–2777, 2009.
    [4] H. T. Wang, G. Z. Wang, F. Z. Xuan, and S. T. Tu, "An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint." Materials and Design, 44, p. 179–189, 2013.
    [5] 王朝正、鄭偉鈞、程金保、黃育熙,“核電廠反應器冷卻水壓力邊界異質銲接件之覆銲特性研究”,行政院原子委員會委託研究計畫研究報告(編號: RG10703-0018),第45-46、48-50頁,2017年。
    [6] M. M. Esfahani, "Welding simulation of steels welded with low transformation temperature (LTT) filler materials." Department of Materials and Manufacturing Technology CHALMERS UNIVERSITY OF TECHNOLOGY Master's Thesis, 2016.
    [7] 洪源璟,“異質銲接件經 GTAW 覆銲處理後殘留應力分布”,國立台灣科技大學機械工程系碩士論文,第 41-43、50-51頁,2018 年。
    [8] S. C. Yoo, K. J. Choi, C. B. Bahn, S. H. Kim, J. Y. Kim, and J. H. Kim, "Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints." Journal of Nuclear Materials, 459, p. 5-12, 2015.
    [9] J. Hou, Q. J. Peng, Y. Takeda, J. Kuniya, T. Shoji, J. Q. Wang, E.-H. Han, and W. Ke, "Microstructure and mechanical property of the fusion boundary region in an Alloy 182-low alloy steel dissimilar weld joint. " 45(19), p. 5332-5338, 2010.
    [10] 柯賢文、王朝正,“腐蝕及其防治”,全華圖書股份有限公司,2014。
    [11] D. A. Jones, "Principles and prevention of corrosion." Macmillan, p. 173-176, 1992.
    [12] S. Won, B. Seo, J. M. Park, H. K. Kim, K. H. Song, S. H. Min, and K. Park, "Corrosion behaviors of friction welded dissimilar aluminum alloys." Materials Characterization, 144, p. 652-660, 2018.
    [13] C. G. Dariva and A. F. Galio, "Corrosion inhibitors–principles, mechanisms and applications." Developments in corrosion protection 16, p. 365-378, 2014.
    [14] S. Wang, J. Ding, H. Ming, Z. Zhang, and J. Wang, "Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET." Materials Characterization, 100, p. 50-60, 2015.
    [15] S. Wang, H. Ming, J. Ding, Z. Zhang, J. Wang, E. H. Han, and A. Atrens, "Effect of H3BO3 on corrosion in 0.01 M NaCl solution of the interface between low alloy steel A508 and alloy 52 M." Corrosion Science, 102, p. 469-483, 2016.
    [16] S. Weng, Y. Huang, F. Xuan, and F. Yang, "Pit evolution around the fusion line of a NiCrMoV steel welded joint caused by galvanic and stress-assisted coupling corrosion." RSC advances, 8(7), p. 3399-3409, 2018.
    [17] B. O. Okonkwo, H. Ming, Z. Zhang, J. Wang, E. Rahimi, S. Hosseinpour, and A. Davoodi, "Microscale investigation of the correlation between microstructure and galvanic corrosion of low alloy steel A508 and its welded 309/308L stainless steel overlayer." Corrosion Science, 154, p. 49-60, 2019.
    [18] G., C. Dariva and F. A. Galio, "Corrosion Inhibitors – Principles, Mechanisms and Applications." Developments in Corrosion Protection, p. 365-378, 2014.
    [19] M. A. A. Ali, "Inhibition of mild steel corrosion in cooling systems by low-and non-toxic corrosion inhibitors." Doctor of Philosophy, University of Manchester, p. 186-190, 2017.
    [20] K. S. Bokati, C. Dehghanian, and S. Yari, "Corrosion inhibition of copper, mild steel and galvanically coupled copper-mild steel in artificial sea water in presence of 1H-benzotriazole, sodium molybdate and sodium phosphate." Corrosion Science 126, p. 272-285, 2017.
    [21] A. A. Khadom, A. F. Hassan, and B. M. Abod, "Evaluation of environmentally friendly inhibitor for galvanic corrosion of steel–copper couple in petroleum waste water." Process Safety and Environmental Protection 98, p. 93-101, 2015.
    [22] I. Carrillo, B. Valdez, R. Zlatev, M. Stoycheva, M. Schorr, and M. Carrillo, "Corrosion inhibition of the galvanic couple copper-carbon steel in reverse osmosis water." International Journal of Corrosion, p. 1-7, 2011.
    [23] C. M. Mustafa, and S.M. Shahinoor Islam Dulal, "Molybdate and nitrite as corrosion inhibitors for copper-coupled steel in simulated cooling water." Corrosion 52.1, p. 16-22, 1996.
    [24] M. S. Vukasovich and D. R. Robitaille, "Corrosion inhibition by sodium molybdate." Journal of the Less Common Metals 54.2, p. 437-448, 1977.
    [25] Y. Zhou and Y. Zuo, "The inhibitive mechanisms of nitrite and molybdate anions on initiation and propagation of pitting corrosion for mild steel in chloride solution." Applied Surface Science 353, p. 924-932, 2015.
    [26] Y. Zou, J. Wang, and Y. Y. Zheng, "Electrochemical techniques for determining corrosion rate of rusted steel in seawater." Corrosion Science 53.1, p. 208-216, 2011.
    [27] X. G. Zhang and E. M. Valeriote. "Galvanic protection of steel and galvanic corrosion of zinc under thin layer electrolytes." Corrosion Science 34.12, p. 1957-1972, 1993.
    [28] M. Sumita, "Comprehensive Structural Integrity." Failure Processes in Biometallic Materials, p. 131-167, 2003.
    [29] D. Y. Lee, W. C. Kim, and J. G. Kim, "Effect of nitrite concentration on the corrosion behaviour of carbon steel pipelines in synthetic tap water." Corrosion Science 64, p. 105-114, 2012.
    [30] A. A. Al-Refaie, J. Walton, R. A. Cottis, and R. Lindsay, "Photoelectron spectroscopy study of the inhibition of mild steel corrosion by molybdate and nitrite anions." Corrosion Science 52.2, p. 422-428, 2010.

    QR CODE