簡易檢索 / 詳目顯示

研究生: 黃文威
Wen-Wei Huang
論文名稱: 添加Al0.5CoCrFeNi2高熵合金顆粒對AZ91鎂合金強度影響之研究
Effect of Al0.5CoCrFeNi2 high entropy alloy particle on strength of AZ91 alloy
指導教授: 丘群
Chun Chiu
口試委員: 陳士勛
Shih-Hsun Chen
王朝正
Chaur-Jeng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 79
中文關鍵詞: 高熵合金AZ91鎂合金鎂基複合材料
外文關鍵詞: high entropy alloy, AZ91 magnesium alloy, magnesium base metal matrix
相關次數: 點閱:193下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用AZ91鎂合金作為基材, Al0.5CoCrFeNi2高熵粉末為強化相,以熱壓粉末冶金的方式製造鎂基複合材料。實驗中在AZ91合金中摻雜5 wt. %、10 wt. %、15 wt. %及30 wt. %的高熵粉末(粒徑為10 μm),探討摻雜量對合金強度的影響;本研究也使用10 μm及90 μm之高熵粉末(摻雜量固定為10 % wt. %),探討粉末粒徑對AZ91合金硬度的影響。
    結果顯示,不同摻雜量之Al0.5CoCrFeNi2高熵粉末鎂基複合材料,其組成均為α-Mg、Mg17Al12、Al-Mn析出物和Al0.5CoCrFeNi2。粉末冶金過程中並未使AZ91與高熵粉末產生相變化。壓縮測試結果顯示,摻雜5 % 10 μm之高熵粉末,使極限抗壓強度45.73 MPa之AZ91增強至150.45 MPa。硬度測驗結果表明摻雜高熵粉末之複合材料硬度皆有增強之效果,摻雜粒徑10 μm高熵粉末之複合材料硬度由55.4HV增強至139.3HV,而摻雜90 μm高熵粉末之AZ91硬度低於摻雜10 μm高熵粉末之AZ91,其硬度為108.6HV。


    In this study, 10 wt. % of Al0.5CoCrFeNi2 high entropy powder with the size of 10 μm and 90 μm were added to AZ91 alloy by powder metallurgy. According to the result of hardness and compression strength, particle size of 10 μm was the best candidate. Magnesium-based composites were then fabricated with four different addition amount (5 wt. %, 10 wt. %, 15 wt. %, 30 wt. %) to study the effect. The analysis was then carried out using SEM, XRD, MTS dynamic testing and Vickers hardness.
    The experimental results showed that the phase composition of magnesium-based composites with different addition amounts are composed of α-Mg, Mg17Al12, Al-Mn precipitates and Al0.5CoCrFeNi2. The microscopic results show that the high entropy powder did not change the phase structure within the composite during the powder metallurgy process. In the compression test results, addition of 5wt. % 10 μm will increase the maximum compressive strength and yield strength from 45.73MPa to 150.45Mpa and 42.5MPa to 149.9Mpa, respectively. The hardness test showed that the hardness of the composite with high entropy powder were enhanced. The hardness of adding 10 μm is enhanced from 55.4 HV to 139.3 HV, while the addition of 90 μm result the lower hardness of 108.6HV.

    摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 IX 第一章 前言 1 第二章 文獻回顧 3 2.1鎂與鎂合金的簡介 3 2.1.1鎂的介紹 3 2.1.2鎂合金的介紹 4 2.1.3鎂合金的命名方法 5 2.1.4合金元素對鎂合金的影響 6 2.1.5 AZ91鎂合金 8 2.2鎂基金屬複合材料 9 2.2.1鎂基金屬複合材料簡介 9 2.2.2摻雜SiC之鎂基金屬複合材料 9 2.2.3摻雜Al2O3之鎂基金屬複合材料 11 2.2.4摻雜TiB2之鎂基金屬複合材料 12 2.2.5摻雜金屬玻璃之鎂基金屬複合材料 12 2.2.6鎂基複合材料製備方法 13 2.3材料的強化機制 14 2.3.1 細晶粒尺寸強化 14 2.3.2固溶強化 14 2.3.3應變硬化 15 2.3.4散佈強化 15 2.3.5析出硬化 15 2.3.6熱膨脹係數差異的影響 16 2.3.7荷仔傳遞作用 16 2.4高熵合金的簡介 17 2.5高熵合金強化機制 18 2.6 AlxFeCoCrNi高熵合金的介紹 19 2.7高能球磨法 21 2.7.1高能球磨原理 21 2.7.2高能球磨之參數 22 2.7.3球磨製程之複合材料 23 2.8熱壓成型 24 2.9文獻回顧心得與研究動機 25 第三章 實驗步驟 26 3.1實驗流程 26 3.2實驗材料製備 27 3.3高能球磨法製程 28 3.4熱壓成型 30 3.5分析儀器 32 3.5.1粒徑分析儀 32 3.5.2 X光繞射儀 33 3.5.3場效發射式掃描電子顯微鏡 34 3.5.4維克氏硬度試驗機 35 3.5.5落地式動態材料試驗機 36 第四章 結果與討論 37 4.1原始材料分析 37 4.1.1 AZ91粉末 37 4.1.2 Al0.5CoCrFeNi2高熵粉末 41 4.2 高能球磨AZ91粉末 43 4.2.1 粒徑分析 43 4.2.2相分析 44 4.3熱壓成型複材錠 46 4.3.1孔隙率分析 46 4.3.2相分析 47 4.3.3顯微結構分析 49 4.3.4壓縮測試分析 56 4.3.5硬度分析 58 4.4討論 60 第五章 結論 62 參考文獻 63

    [1] B. Mordike and T. Ebert, "Magnesium: properties—applications—potential," Materials Science and Engineering: A, vol. 302, no. 1, pp. 37-45, 2001.
    [2] J. W. Yeh.,S.K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes," Advanced Engineering Materials, vol. 6, no. 5, pp. 299-303, 2004.
    [3] J. W. Yeh , "Recent progress in high entropy alloys," Ann. Chim. Sci. Mat, vol. 31, no. 6, pp. 633-648, 2006.
    [4] R. Mishra, N. Kumar, and M. Komarasamy, "Lattice strain framework for plastic deformation in complex concentrated alloys including high entropy alloys," Materials Science and Technology, vol. 31, no. 10, pp. 1259-1263, 2015.
    [5] W. F. McDonough and S. S. Sun, "The composition of the Earth," Chemical geology, vol. 120, no. 3-4, pp. 223-253, 1995.
    [6] M. K. Kulekci, "Magnesium and its alloys applications in automotive industry," The International Journal of Advanced Manufacturing Technology, vol. 39, no. 9-10, pp. 851-865, 2008.
    [7] A. International, "Standard Practice for Temper Designations of Magnesium Alloys, Cast and Wrought," ASTM Standard B296, 2008.
    [8] A. A. Luo, "Recent magnesium alloy development for elevated temperature applications," International materials reviews, vol. 49, no. 1, pp. 13-30, 2004.
    [9] A. Kielbus and T. Rzychon, "Mechanical and creep properties of Mg-4Y-3RE and Mg-3Nd-1Gd magnesium alloy," Procedia Engineering, vol. 10, pp. 1835-1840, 2011.
    [10] T. Thirugnanasambandham, J. Chandradass, P. B. Sethupathi, and M. L. J. Martin, "Experimental study of wear characteristics of Al2O3 reinforced magnesium based metal matrix composites," Materials Today: Proceedings, vol. 14, pp. 211-218, 2019.
    [11] S.J. Huang and A. N. Ali, "Experimental investigations of effects of SiC contents and severe plastic deformation on the microstructure and mechanical properties of SiCp/AZ61 magnesium metal matrix composites," Journal of Materials Processing Technology, vol. 272, pp. 28-39, 2019.
    [12] A.Luo, "Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites," Metallurgical and Materials Transactions A, vol. 26, no. 9, pp. 2445-2455, 1995.
    [13] M. Gupta. S .F Hassan, "Development of high performance magnesium nano-composites usingnano-Al2O3as reinforcement," Materials Science and Engineering A, vol. 392, pp. 163-168, 2004.
    [14] Q. C. Jaing,H.Y Wang, Y. Wang, B.X. Ma, F. Zhao, "Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy," Materials Letters 58 2004.
    [15] K. Georgarakis. D.V. Dudina , Y. Li, M. Aljerf, A. LeMoulec, A.R. Yavari, A. Inoue, "A magnesium alloy matrix composite reinforced with metallic glass," Composites Science and Technology, vol. 69, pp. 2734-2736, 2009.
    [16] S.RAY, "MTech Dissertation," Indian Institute of Technology Kanpur, 1969.
    [17] M. F. E. W. N. N.HARNBY, "Mixing in Process Industries," Butterworths, London, 1985.
    [18] X. Y. L. HAI ZHI YE, "Review of recent studies in magnesium matrix composites," Integrated Manufacturing Technologies Institute, National Research Council of Canada, , 2004.
    [19] R. Abbaschian and R. E. Reed-Hill, Physical metallurgy principles. Cengage Learning, 2008.
    [20] Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, and T. Suzuki, "Solid solution hardening of Ni3Al with ternary additions," Transactions of the Japan institute of metals, vol. 27, no. 9, pp. 648-655, 1986.
    [21] A. Styczynski, C. Hartig, J. Bohlen, and D. Letzig, "Cold rolling textures in AZ31 wrought magnesium alloy," Scripta Materialia, vol. 50, no. 7, pp. 943-947, 2004.
    [22] H. Mecking and U. Kocks, "Kinetics of flow and strain-hardening," Acta Metallurgica, vol. 29, no. 11, pp. 1865-1875, 1981.
    [23] S. Hassan and M. Gupta, "Enhancing physical and mechanical properties of Mg using nanosized Al 2 O 3 particulates as reinforcement," Metallurgical and Materials Transactions A, vol. 36, no. 8, pp. 2253-2258, 2005.
    [24] A. J. Ardell, "Precipitation hardening," Metallurgical Transactions A, vol. 16, pp. 2131–2165, 1985.
    [25] R. Arsenault and N. Shi, "Dislocation generation due to differences between the coefficients of thermal expansion," Materials Science and Engineering, vol. 81, pp. 175-187, 1986.
    [26] K. Deng, C. Wang, and X. Wang, "Microstructure, mechanical properties and strengthening mechanism of SiCP/AZ91 composites," Acta Materiae Compositae Sinica, vol. 31, no. 2, pp. 388-395, 2014.
    [27] S.-J. Huang, W.-Y. Peng, B. Visic, and A. Zak, "Al alloy metal matrix composites reinforced by WS2 inorganic nanomaterials," Materials Science and Engineering: A, vol. 709, pp. 290-300, 2018.
    [28] S.-J. Huang, C.-H. Ho, Y. Feldman, and R. Tenne, "Advanced AZ31 Mg alloy composites reinforced by WS2 nanotubes," Journal of Alloys and Compounds, vol. 654, pp. 15-22, 2016.
    [29] R. Aikin Jr and L. Christodoulou, "The role of equiaxed particles on the yield stress of composites," 1991.
    [30] W. C. C. H.J. Chen, "A study of phase transformations in an Al0.5CoCrFeNi2 high entropy alloy," M.S. Thesis, National Taiwan University of Science and Technology, 2005.
    [31] K.-H. Huang and J. Yeh, "A study on the multicomponent alloy systems containing equal-mole elements," Hsinchu: National Tsing Hua University, 1996.
    [32] K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, "Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys," Acta Materialia, vol. 61, no. 13, pp. 4887-4897, 2013.
    [33] D.-H. Lee., "Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys," Acta Materialia, vol. 109, pp. 314-322, 2016.
    [34] S. Ranganathan, "Alloyed pleasures: multimetallic cocktails," Current science, vol. 85, no. 5, pp. 1404-1406, 2003.
    [35] Y.-F. Kao, T.-J. Chen, S.-K. Chen, and J.-W. Yeh, "Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys," Journal of Alloys and Compounds, vol. 488, no. 1, pp. 57-64, 2009/11/20/ 2009.
    [36] S. G. Ma, P. K. Liaw, M. C. Gao, J. W. Qiao, Z. H. Wang, and Y. Zhang, "Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer," Journal of Alloys and Compounds, vol. 604, pp. 331-339, 2014/08/15/ 2014.
    [37] S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, and J. Li, "Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy," Materials Science and Engineering: A, vol. 671, pp. 82-86, 2016/08/01/ 2016.
    [38] M. Ogura, T. Fukushima, R. Zeller, and P. H. Dederichs, "Structure of the high-entropy alloy AlxCrFeCoNi: fcc versus bcc," Journal of Alloys and Compounds, vol. 715, pp. 454-459, 2017/08/25/ 2017.
    [39] J. C. Rao., "Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal," Acta Materialia, vol. 131, pp. 206-220, 2017/06/01/ 2017.
    [40] P. Zhou, D. Xiao, Z. Wu, and X. Ou, "Al0. 5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders," Materials Science and Engineering: A, vol. 739, pp. 86-89, 2019.
    [41] K.C. Cheng, J.H. Chen, S. Stadler, and S.-H. Chen, "Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process," Applied Surface Science, vol. 478, pp. 478-486, 2019/06/01/ 2019.
    [42] J. S. Benjamin, "Dispersion strengthened superalloys by mechanical alloying," Metallurgical transactions, vol. 1, no. 10, pp. 2943-2951, 1970.
    [43] 王世敏、許祖勛、傅晶, "奈米材料原理與製備," vol. 五南圖書.
    [44] W. Kim, K.-M. Roh, J.-W. Lim, H.-S. Oh, and I.-J. Shon, "The effect of ball milling on the mechanical properties of TiN consolidated by pulsed current activated sintering," Journal of Alloys and Compounds, vol. 574, pp. 260-265, 2013.
    [45] B. L. M. H. Ferkel "Magnesium strengthened by SiC nanoparticles," Materials Science and Engineering A, vol. 298, pp. 193-199, 2000.
    [46] 伍. 、黃錦鐘, "粉末冶金學," 高立圖書公司, 1995.
    [47] R. German, Sintering: from empirical observations to scientific principles. Butterworth-Heinemann, 2014.
    [48] 鄭信民、林麗娟, "X光繞射應用簡介," 工業材料雜誌 181期, 2002.
    [49] M. Kheradmandfard., "Nanostructured β-type titanium alloy fabricated by ultrasonic nanocrystal surface modification," Ultrasonics sonochemistry, vol. 39, pp. 698-706, 2017.
    [50] P. J. Mingxu Wang, Dianfei Lv, Haoran Geng, "Study on the microstructure and liquid–solid correlation of Al–Mg alloys," Physics and Chemistry of Liquids, vol. 54, pp. 1-8, 2015.
    [51] M. Rahimian, N. Ehsani, N. Parvin, and H. r. Baharvandi, "The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy," Journal of Materials Processing Technology, vol. 209, no. 14, pp. 5387-5393, 2009/07/19/ 2009.
    [52] H. Sevik and S. C. Kurnaz, "Properties of alumina particulate reinforced aluminum alloy produced by pressure die casting," Materials & design, vol. 27, no. 8, pp. 676-683, 2006.
    [53] M. Rahimian, N. Parvin, and N. Ehsani, "Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy," Materials Science and Engineering: A, vol. 527, no. 4-5, pp. 1031-1038, 2010.
    [54] M. Kok, "Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites," Journal of Materials Processing Technology, vol. 161, no. 3, pp. 381-387, 2005.
    [55] J. Čapek and D. Vojtěch, "Properties of porous magnesium prepared by powder metallurgy," Materials Science and Engineering: C, vol. 33, no. 1, pp. 564-569, 2013.
    [56] F. P. Knudsen, "Dependence of Mechanical Strength of Brittle Polycrystalline Specimens on Porosity and Grain Size," Journal of the American Ceramic Society, vol. 42, no. 8, pp. 376-387, 1959.

    無法下載圖示 全文公開日期 2024/08/15 (校內網路)
    全文公開日期 2024/08/15 (校外網路)
    全文公開日期 2024/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE