簡易檢索 / 詳目顯示

研究生: 黃建忠
Chien-Chung Huang
論文名稱: 強化相粒徑對AZ61/SiCp鎂基複合材料鑄錠及擠型材之機械性質影響的研究
Effect of reinforcement size on the mechanical properties of as cast and extruded AZ61/SiCp magnesium matrix composites
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 向四海
Hai-Hsiang Su
周振嘉
Chen-Chia Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 106
中文關鍵詞: 鎂基複合材料(Mg MMCs)碳化矽微粒擠製矽化鎂機械性質
外文關鍵詞: Magnesium metal matrix composites (Mg MMCs), SiC particles (SiCp), extrusion, Mg2Si, mechanical properties
相關次數: 點閱:203下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎂基複合材料(Magnesium Metal Matrix Composites, Mg MMCs)具有比鎂合金相對優異的力學性能,經由在基材中加入如微粒、短纖維和連續纖維等強化相,使基材和強化相在擁有良好的結合性的情況下,以提升機械性質。本研究選用三種粒徑尺寸之微米級碳化矽顆粒(SiCp,p:particle)為強化相,以攪拌鑄造的方式將強化相均勻散佈於AZ61鎂合金中,製備鎂合金複合材料。為求材料成份的均勻,統一將鑄錠進行固溶處理,以消除偏析使材料均質化,同時提升材料的延展性,以利進行後續的擠製加工;擠製加工部份,必須在適當的擠製溫度與速度下進行圓棒的擠製,以求良好的擠製成品。最後進行鎂基複材鑄錠(Ingot)和擠製棒材(Rod)之機械性質比較與探討,同時進一步觀察兩者的微觀結構,探討強化相粒徑尺寸對鎂基複材之影響。
    本研究結果顯示,隨著強化相粒徑尺寸的增加,鎂基複材鑄錠之極限強度、降伏強度、延展性、硬度則逐漸下降,粒徑尺寸10 μm相較1 μm分別下降了19.2%、10.7%、36.7%、2.5%;擠製棒材部份,AZ61/5 wt% SiCp/1 μm有較佳的機械性質,其機械性質也隨著強化相粒徑尺寸的增加而下降。AZ61/5 wt% SiCp/1 μm擠製棒材其極限強度316.0 MPa、降伏強度147.5 MPa、延展性16.6%、硬度69.1 HV,相較於同成份的鎂基複材鑄錠,分別提升74.1%、97.7%、176.7%、13.5%;而相較於AZ61擠製棒材,除延展率下降外則分別提升5.3%、12.4%、3.7%。擠製棒材經時效處理後,極限強度、降伏強度、硬度皆得到了提升,因β相的析出而使延展性下降。
    本研究在AZ61/5 wt% SiCp/10 μm鑄錠經固溶處理後,於金相圖中之晶粒與晶界處發現有Mg2Si化合物,從而影響鎂基複材之機械性質。由數據結果顯示,當添加強化相粒徑尺寸為10 μm時,機械性質有明顯地下降趨勢。
    並由強化機制之貢獻度計算結果證實,其晶界強化的影響,為本研究主要提升降伏強度的主因。


    The mechanical behavior of magnesium metal matrix composites (Mg MMCs) are superior to those of the pure metal alloy. By adding the reinforcement, such as particles, short fibers, or continuous fibers, into the metal matrix can improve the composite’s mechanical properties. Three different particle size of SiCp are dissolved into AZ61 by the stir-casting method, and then the Mg-based composite is fabricated. Before extrusion, solid solution treatment was conducted to improve the ductility of the material. Eventually, the mechanical properties of the composite before and after the extrusion with aging treatment are discussed.
    The results shows that the ultimate tensile strength, yielding strength, ductility and hardness of magnesium matrix composites will decrease with increasing the size of reinforcement. The ultimate tensile strength, yielding strength, ductility and hardness of AZ61/5 wt% SiCp/10 μm ingot are 146.7 MPa, 66.6 MPa, 3.8% and 59.4 HV, respectively. Compared with the AZ61/5 wt% SiCp/1 μm ingot were reduced 19.2%、10.7%、36.7%、2.5%. For the extrusion rod, AZ61/5 wt% SiCp/1 μm exhibits better mechanical properties, which will decrease with increasing the reinforcement size. The ultimate strength, yielding strength, ductility and hardness are 316.0 MPa, 147.5 MPa, 16.6% and 69.1 HV, respectively. In addition, aging treatment will enhance the ultimate strength, yielding strength and hardness of rods.
    In this study, microstructure of AZ61/5 wt% SiCp/10 μm ingot shows Mg2Si compound at the grain boundaries after solid solution treatment. The Mg2Si compound will affect the mechanical properties of magnesium matrix composite. From the experiment results, the mechanical properties decreased greatly with the reinforcement size of 10 μm.

    摘要 I Abstract III 誌謝 IV 目錄 V 符號索引 IX 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 鎂基複合材料相關文獻 3 1.2.2 擠製加工相關文獻 8 1.3 文獻回顧心得整理 16 1.4 研究動機與目的 17 第二章 鎂合金相關性質 19 2.1 鎂合金的特性 19 2.2 鎂合金符號之標示法 20 2.3 合金元素對鎂合金之影響 21 2.3.1 鋁元素的影響 22 2.3.2 鋅元素的影響 23 2.4 鎂合金發展與應用 24 2.5 擠製加工製程簡介 25 2.6 鎂合金擠製加工之優勢 28 2.6.1 鎂合金擠製加工技術之影響參數 29 2.7 鎂基複合材料的強化機制 30 2.7.1 晶界強化 30 2.7.2 Orowan強化 30 2.7.3 熱膨脹係數差異影響 31 2.7.4 負荷影響(Load bearing) 32 2.8 鎂合金熱處理 33 2.8.1 熱處理參數的影響 34 第三章 實驗方法與步驟 35 3.1 實驗材料與強化相 37 3.2 實驗設備 38 3.2.1 鑄造用熔爐 38 3.2.2 500噸臥式熱間擠製機 40 3.2.3 高溫熱處理爐 44 3.2.4 濕式自動研磨/拋光機 44 3.2.5 光學顯微鏡(Optical Microscope, OM) 45 3.2.6 微型維克氏硬度機(Micro-Vickers hardness tester) 45 3.2.7 動態拉伸試驗機(Material Test System, MTS) 46 3.3 鎂基複合材料製備 47 3.3.1 熔煉製備步驟 47 3.3.2 鑄錠之擠錠規劃 49 3.3.3 鑄錠之拉伸試棒規劃 50 3.4 500噸熱間擠製機棒材製備 51 3.4.1 實驗步驟 51 3.4.2 擠製棒材之拉伸試棒規劃 53 第四章 結果與討論 55 4.1 T4固溶處理對鑄錠之影響 55 4.2 強化相SiCp粒徑對鑄錠晶粒之影響 56 4.3 強化相SiCp粒徑對鑄錠硬度之影響 59 4.4 鑄錠之拉伸試驗 60 4.5 鎂合金AZ61/SiCp之擠製棒材 66 4.6 強化相SiCp粒徑對擠製棒材晶粒之影響 67 4.7 T5時效處理對擠製棒材晶粒尺寸與硬度之影響 69 4.8 擠製棒材之拉伸試驗 74 4.9 Ingot與Rod之各項機械性質比較探討 77 4.9.1 Ingot與Rod之降伏強度與晶粒尺寸 77 4.9.2 Ingot與Rod之極限強度 79 4.9.3 Ingot與Rod之延展性與硬度 81 4.10 強化機制之貢獻程度計算 84 第五章 結論 86 第六章 未來研究方向 88 參考文獻 89

    [1] 周英哲,「不同冷卻速率於鎂鋁合金之熱分析研究」,碩士論文,國立中央大學,桃園 (2008)。
    [2] 陳文隆,「壓延條件對於AZ31鎂合金機械性質之影響」,碩士論文,逢甲大學,台中 (2003)。
    [3] X. J. Wang, K. Wu, W. X. Huang, H. F. Zhang, M. Y. Zheng and D.L. Peng, ”Study on fracture behavior of particulate reinforced magnesium matrix composite using in situ SEM” , Composites Science and Technology, Vol. 67, pp. 2253-2260 (2007).
    [4] 陳志亦,「鎂基複合材料AZ91D/SiCp製備之研究」,碩士論文,國立中正大學,嘉義 (2005)。
    [5] 洪品森,「鎂基複合材料的製備及其熱處理後機械性質之研究」,碩士論文,國立中正大學,嘉義 (2009)。
    [6] 陳仲威,「添加AlNp鎂基複材製備及機械性質之研究」,碩士論文,國立中正大學,嘉義 (2010)。
    [7] 黃友聖,「AZ61/SiCp鎂基複合材料擠型製程及其擠型管之機械性質研究」,碩士論文,國立中正大學,嘉義 (2011)。
    [8] 劉彥辰,「AM60/Al2O3p鎂基複合材料擠型管之機械性質與微觀組織研究」,碩士論文,國立中正大學,嘉義 (2012)。
    [9] Hai Zhi Ye and Xing Yang Liu, “Review of recent studies in magnesium matrix composites” ,Journal of Materials Science, Vol. 39, pp. 6153-6171 (2004).
    [10] M.K.K. Oo, P.S. Ling and M. Gupta, “Characteristics of Mg-Based Composites Synthesized Using a Novel Mechanical Disintegration and Deposition Technique” , Metallurgical and Materials Transactions A, Vol. 31, pp. 1873-1881 (2000).
    [11] B.V. Manoj Kumar, Bikramjit Basu, V.S.R. Murthy and Manoj Gupta, “The role of tribochemistry on fretting wear of Mg–SiC particulate composites” ,Composites: Part A, Vol. 36, pp. 13-23 (2005).
    [12] M. Manoharan, S.C.V. Lim and M. Gupta, “Application of a model for the work hardening behavior to Mg/SiC composites synthesized using a fluxless casting process” ,Materials Science and Engineering A, Vol. 333, pp. 243-249 (2002).
    [13] B. W. Chua, L. Lu and M.O. Lai, “Influence of SiC particles on mechanical properties of Mg based composite” , Composite Structures, Vol. 47, pp.595-601 (1999).
    [14] Lu Li, M. O. Lai, M. Gupta, B. W. Chua and A. Osman, “Improvement of microstructure and mechanical properties of AZ91/SiC composite by mechanical alloying” , Journal of Materials Science, Vol. 35, pp. 5553-5561 (2000).
    [15] Muhammad Shahzad and Lothar Wagner, “Influence of extrusion parameters on microstructure and texture developments, and their effects on mechanical properties of the magnesium alloy AZ80” , Materials Science and Engineering A, Vol. 506, pp. 141-147 (2009).
    [16] 趙書傑,「MRI鎂合金高溫高週疲勞特性之研究」,碩士論文,逢甲大學,台中 (2007)。
    [17] S. C. V. Lim and M. Gupta, “Enhancing the microstructural and mechanical response of a Mg/SiC formulation by the method of reducing extrusion temperature” , Materials Research Bulletin, Vol.36, pp. 2627-2636 (2001).
    [18] S. Ugandhar, M. Gupta and S. K. Sinha, “Enhancing strength and ductility of Mg/SiC composites using recrystallization heat treatment” , Composite Structures, Vol. 72, pp. 266-272 (2006).
    [19] S. K. Sinha, S. U. Reddy and M. Gupta, “Scratch hardness and mechanical property correlation for Mg/SiC and Mg/SiC/Ti metal-matrix composites” , Tribology International, Vol. 39, pp. 184-189 (2006).
    [20] A. El-Morsy, A. Ismail and M. Waly, “Microstructural and mechanical properties evolution of magnesium AZ61 alloy processed through a combination of extrusion and thermomechanical processes” , Materials Science and Engineering A, Vol. 486, pp. 528-533 (2008).
    [21] X. J. Wang, K. Wu, H. F. Zhang, W.X. Huang, H.Chang, W.M. Gan, M.Y. Zheng and D.L. Peng, “Effect of hot extrusion on the microstructure of a particulate reinforced magnesium matrix composite” , Materials Science and Engineering A, Vol. 465, pp. 78-84 (2007).
    [22] P. C. Wang, M. C. Lin, H. C. Lin, K. M. Lin, M. T. Yeh and C. Y. Lin, “Effects of aging treatment on microstructure and mechanical property of an AZ80N magnesium alloy” , Materials Science and Engineering A, Vol. 527, pp.4076-4081 (2010).
    [23] Y. Uematsu, K. Tokaji and M. Matsumoto, “Effect of aging treatment on fatigue behaviour in extruded AZ61 and AZ80 magnesium alloys” , Materials Science and Engineering A, Vol. 517, pp. 138-145 (2009).
    [24] 康永林、王朝輝,「半固態工藝製備奈米SiC顆粒增強AM60鎂合金的研究」,特種鑄造及有色合金,第八期,第18-20頁 (2007)。
    [25] 邱仁志,「AZ80鎂合金管材與棒材之熱擠成形性探討」,碩士論文,國立台灣科技大學,台北 (2007)。
    [26] J. L. Murray, L. H. Bennett and H. Kacprzak, Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, Ohio (1986).
    [27] 葉哲政,從微笑理論看我國鎂合金產業未來發展方向,ITIS產業資訊 (2004)。
    [28] 葉哲政,輕合金在運動休閒器材之應用專題研究, ITIS產業資訊 (2005)。
    [29] Pradip K. Saha, Aluminum Extrusion Technology, ASM International,USA, pp. 1-28 (2000).
    [30] E. Totten and D.Mackenzie, Handbook of aluminum, Marcel Dekker, Inc, Vol. 1, NY, pp. 385-480(2003).
    [31] 涂仕明,「鎂合金管件熱間擠型之研究」,碩士論文,國立中山大學,高雄 (2009)。
    [32] M. Habibnejad-Korayem, “Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles” ,Materials Science and Engineering A, Vol. 519, pp. 198-203 (2009).
    [33] 陸仁凱,「7XXX系含鈧鋁合金的顯微結構與機械性質之分析」,碩士論文,國立中央大學,桃園 (2006)。
    [34] 劉偉隆、林淳杰、曾春風、陳文照,物理冶金Physical Metallurgy Principles,全華科技圖書股份有限公司,台北(1996)。
    [35] 潘复生、韓恩厚,高性能變型鎂合金及加工技術,科學出版社,台北(2010)。
    [36] Parul Agrawal and C. T. Sun, “Fracture in metal–ceramic composites” , Composites Science and Technology, Vol. 64, pp. 1167-1178 (2004).
    [37] 雷添壽、林本源、溫東成,機械工程實驗(一),全華科技圖書股份有限公司,台北,第4.1-4.14、18.1-18.9頁 (2001)。
    [38] B. Inem and G. Pollard, “Interface structure and fractography of a magnesium-alloy, metal-matrix composite reinforced with SiC particles” , Journal of materials science, Vol. 28, pp. 4427-4434 (1993).
    [39] S. J. Huang and P. C. Lin, “Grain refinement of AM60/Al2O3p Megnesium Metal-matrix Composites Processed by ECAE” , Kovove Materialy-Metallic Materials.
    [40] S. F. Hassan and M. Gupta, “Development of high performance magnesium nanocomposites using solidification processing route” , Materials Science and Technology, Vol. 20, pp. 1383-1388 (2004).
    [41] C. S. Goh, J. Wei, L. C. Lee and M. Gupta, “Properties and deformation behaviour of Mg-Y2O3 nanocomposites” , Acta Mater., Vol. 55, pp. 5115-5121 (2007).
    [42] Z. Zhang and D. L. Chen, “Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites” , Mater. Sci. Eng., A 483-494, pp. 148-152 (2008).

    QR CODE