簡易檢索 / 詳目顯示

研究生: 林子棠
Tzu-Tang Lin
論文名稱: 探討Ti元素添加對於Al0.5CoCrFeNi2 高熵合金粉末與熱噴塗塗層性質之影響
Effects of titanium addition on properties of Al0.5CoCrFeNi2 HEA powders and their coatings prepared via atmospheric plasma spraying technique
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 陳建仲
Chien-Chon Chen
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 59
中文關鍵詞: 高熵合金氣體霧化法Al0.5CoCrFeNi2Ti大氣電漿噴塗技術相變化
外文關鍵詞: High-entropy alloys, Gas atomization, Al0.5CoCrFeNi2Ti, Atmospheric plasma spraying technology, Phase transformation
相關次數: 點閱:243下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇研究中,利用氣體霧化法製備Al0.5CoCrFeNi2Ti 高熵合金粉末,分別為(ⅰ) <10、(ⅱ) 10-60、(ⅲ) 60-120、(ⅳ) >120 μm四種尺寸。不僅如此,更進一步地將合金粉末應用於熱噴塗表面改質技術,製備出具有相可調性之塗層,並與本團隊先前研究之Al0.5CoCrFeNi2 合金粉末及噴塗層比較,探討鈦添加對粉末冶金行為及塗層性質所造成的效應。
    由氣體霧化法製備的Al0.5CoCrFeNi2Ti合金粉末成份組成精確且分佈均勻,經XRD分析結果指出,其晶格結構隨著粒徑的增加,從單一的BCC結構,變成FCC+BCC的雙相結構。經研究指出合金粉末在經過退火熱處理後,在微觀結構上先是以花瓣狀組織,轉變成島嶼狀組織;在成份分佈上發現花瓣狀組織為富Al區所組成,以及Cr與Ni間相互排斥導致元素偏析的現象,而隨著退火溫度與時間的增加,有明顯的Cr-Fe與Ni-Ti析出物形成,且在母材中成核成長使整體晶粒尺寸縮小、晶粒數量增加,產生晶粒細化的效果。熱處理對晶格結構繞射峰的貢獻也將在本研究中討論,根據XRD與EBSD分析結果指出10-60 μm合金粉末的晶體結構在初始階段為BCC相,其中合金元素均勻地散布於BCC架構中,形成無序的B2相;此外,隨著熱處理能量的提升,晶體結構轉變為有序的BCC相與FCC相之雙相結構,爾後析出少量的Cr-Fe σ相與 Ni-Ti Hexagonal相。
    在機械性質的表現上,由奈米壓痕法看出合金粉末經過熱處理後平均硬度由退火前的6.28 GPa上升到7.24 GPa,此乃是因為析出物的生成而形成的析出強化效果;而在塗層硬度的表現上發現到,相較於Al0.5CoCrFeNi2塗層的平均硬度HV206.6,在相同噴塗條件下Al0.5CoCrFeNi2Ti塗層硬度上升至平均HV359.62有顯著的提升,此大幅的提升則主要源自Ti的添加導致的固溶強化效果所致。


    In this study, the Al0.5CoCrFeNi2Ti powders were fabricated by the gas-atomization method and sieved into four groups, which were (ⅰ) <10, (ⅱ) 10-60, (ⅲ) 60-120, (ⅳ) >120 μm, respectively. The as-atomized Al0.5CoCrFeNi2Ti powders were further applied in the thermal spraying technology to achieve the phase-adjustable coating. Effects of Ti addition on properties of Al0.5CoCrFeNi2Ti powders and their coatings were investigated by comparing with those fabricated with Ti-free Al0.5CoCrFeNi2 from our previous research.
    The as-atomized powders were spherical with uniform element distribution and changeable crystal structure, which transformed from the single BCC phase to the FCC+BCC complex phase with increasing particle size. In order to investigate the phase transformation behavior, the annealing process was adopted, and several analytical methods were sequentially carried out. With the SEM EDS Mapping analysis, the Al-rich flower-like structure was first observed. Then, the segregation of Cr and Ni was found. Furthermore, the Cr-Fe and Ni-Ti precipitates were formed with the increase of annealing time. As the result of the formation of precipitates, the island-like structure and grain refinement were observed. XRD and EBSD results indicated that the crystal structure of the 10-60 μm as-atomized Al0.5CoCrFeNi2Ti powders were disordered BCC phase. After the annealing process, the disordered BCC phase was transferred into an ordered BCC phase and FCC phase. Meanwhile, the secondary phase of σ-phase and hexagonal phase was formed sequentially with annealing energy.
    In order to evaluate the effects of heat treatment on mechanical properties of Al0.5CoCrFeNi2Ti powders and their coating, the nano-indentation test and micro-Vickers hardness test were adopted. As a result, it was measured that the average hardness of 10-60 μm HEA powder was improved from 6.28 GPa to 7.24 GPa after annealed due to the precipitation strengthening. Nevertheless, compared with Ti-free Al0.5CoCrFeNi2 coating, the average hardness of Al0.5CoCrFeNi2Ti coating was significantly improved from HV206.6 to HV359.62 due to the solid solution strengthening resulting from the Ti addition.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 XI 第1章 前言 1 第2章 文獻回顧 3 2.1 高熵合金系統的發展背景 3 2.2 高熵合金的定義 4 2.3 高熵合金的特性 6 2.3.1 高熵合金的四大核心效應 6 2.3.2 高熵合金的性質 9 2.4 高熵合金的應用 17 2.4.1 高熵合金粉末製程技術 18 2.4.2 高熵合金之表面改質應用 20 2.5前導文獻回顧與研究動機總結 22 第3章 實驗方法 25 3.1 實驗流程 25 3.1.1 粉末試片製備 26 3.1.2 粉末之熱處理參數 26 3.2 熱噴塗塗層製程參數 28 3.3 實驗分析儀器 29 3.3.1 X射線繞射分析儀(X-Ray Diffraction, XRD) 29 3.3.2 差示掃描量熱分析儀 (Differential scanning calorimetry, DSC) 31 3.3.3 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 32 第4章 結果與討論 36 4.1高熵合金粉末分析 36 4.1.1 高熵合金粉末之基礎性質分析 36 4.1.2 熱處理對高熵合金粉末微觀結構的影響 40 4.1.3 熱處理對高熵合金粉末晶格結構的影響 42 4.1.4 熱處理對高熵合金元素分佈的影響 44 4.1.5 熱處理對高熵合金粉末機械性質的影響 46 4.2 高熵合金塗層結構與性質分析 48 第5章 結論 53 參考文獻 54

    [1] M.-H. Tsai, J.-W. Yeh, High-Entropy Alloys: A Critical Review, Materials Research Letters, 2 (2014) 107-123.
    [2] High-EntropyAlloys fundamental and applications 2016.pdf
    [3] M.C. Gao, Progress in High Entropy Alloys, Jom, 67 (2015) 2251-2253.
    [4] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science, 61 (2014) 1-93.
    [5] W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, J.-W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26 (2012) 44-51.
    [6] T.M. Butler, M.L. Weaver, Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys, Journal of Alloys and Compounds, 674 (2016) 229-244.
    [7] N. Deng, J. Wang, J. Wang, Y. He, Z. Lan, R. Zhao, E. Beaugon, J. Li, Microstructure and properties of AlCoCrCuFeNi high-entropy alloy solidified under high magnetic field, Materials Letters, 285 (2021).
    [8] L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, L. Zhou, Effect of aging temperature on microstructure and properties of AlCoCrCuFeNi high-entropy alloy, Intermetallics, 17 (2009) 266-269.
    [9] D. Ma, M. Yao, K.G. Pradeep, C.C. Tasan, H. Springer, D. Raabe, Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys, Acta Materialia, 98 (2015) 288-296.
    [10] P. Fauchais, G. Montavon, G. Bertrand, From Powders to Thermally Sprayed Coatings, Journal of Thermal Spray Technology, 19 (2009) 56-80.
    [11] K.K. Alaneme, M.O. Bodunrin, S.R. Oke, Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: a review, Journal of Materials Research and Technology, 5 (2016) 384-393.
    [12] P. Ding, A. Mao, X. Zhang, X. Jin, B. Wang, M. Liu, X. Gu, Preparation, characterization and properties of multicomponent AlCoCrFeNi2.1 powder by gas atomization method, Journal of Alloys and Compounds, 721 (2017) 609-614.
    [13] D.L. Zhang, Processing of advanced materials using high-energy mechanical milling, Progress in Materials Science, 49 (2004) 537-560.
    [14] C.B. Basak, M. Krishnan, R. Kumar, K.K. Abdullah, S. Anantharaman, Characterization and process evaluation of Ni–Ti–Fe shape memory alloy macro-spheres directly fabricated via rotating electrode process, Journal of Alloys and Compounds, 597 (2014) 15-20.
    [15] S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, K. Biswas, Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties, Materials Science and Engineering: A, 679 (2017) 299-313.
    [16] P.F. Zhou, D.H. Xiao, Z. Wu, X.Q. Ou, Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders, Materials Science and Engineering: A, 739 (2019) 86-89.
    [17] K.-C. Cheng, J.-H. Chen, S. Stadler, S.-H. Chen, Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process, Applied Surface Science, 478 (2019) 478-486.
    [18] C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, P.K. Liaw, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Materials & Design, 109 (2016) 425-433.
    [19] A. Munitz, S. Salhov, S. Hayun, N. Frage, Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy, Journal of Alloys and Compounds, 683 (2016) 221-230.
    [20] J.-T. Liang, K.-C. Cheng, S.-H. Chen, Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders, Journal of Alloys and Compounds, 803 (2019) 484-490.
    [21] J.-T. Liang, K.-C. Cheng, S.-H. Chen, J.-H. Chen, S. Stadler, C.-L. Li, C.-H. Hsueh, Study on the continuous phase evolution and physical properties of gas-atomized high-entropy alloy powders, Materials Research Express, 7 (2020).
    [22] Y. Zhao, M. Wang, H. Cui, Y. Zhao, X. Song, Y. Zeng, X. Gao, F. Lu, C. Wang, Q. Song, Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys, Journal of Alloys and Compounds, 805 (2019) 585-596.
    [23] M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, J.-W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Materialia, 59 (2011) 6308-6317.
    [24] J. Liu, H. Liu, P. Chen, J. Hao, Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding, Surface and Coatings Technology, 361 (2019) 63-74.
    [25] A.S.f. Testing, M. Staff, Four Outstanding Researches in Metallurgical History by Cyril Stanley Smith, Books on Demand.
    [26] Y. Zhang, Y. Zhou, X. Hui, M. Wang, G. Chen, Minor alloying behavior in bulk metallic glasses and high-entropy alloys, Science in China Series G: Physics, Mechanics and Astronomy, 51 (2008) 427-437.
    [27] J. Yeh, S. Chen, S. Lin, J.Gan, T. Chin, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Advanced Engineering Material, 2004.
    [28] D. Gaskell, Introduction to the thermaldynamics of materials, third edition.
    [29] J.-K. Xiao, Y.-Q. Wu, J. Chen, C. Zhang, Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings, Wear, 448-449 (2020).
    [30] J.-W. Yeh, Alloy Design Strategies and Future Trends in High-Entropy Alloys, Jom, 65 (2013) 1759-1771.
    [31] B.S. Murty, J.W. Yeh, S. Ranganathan, High-Entropy Alloys, High Entropy Alloys2014, pp. 13-35.
    [32] O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis, Acta Materialia, 61 (2013) 1545-1557.
    [33] H.-P. Chou, Y.-S. Chang, S.-K. Chen, J.-W. Yeh, Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Materials Science and Engineering: B, 163 (2009) 184-189.
    [34] R.X. Li, P.K. Liaw, Y. Zhang, Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides, Materials Science and Engineering: A, 707 (2017) 668-673.
    [35] S.G. Ma, P.K. Liaw, M.C. Gao, J.W. Qiao, Z.H. Wang, Y. Zhang, Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer, Journal of Alloys and Compounds, 604 (2014) 331-339.
    [36] K. Osintsev, S. Konovalov, V. Gromov, I. Panchenko, X. Chen, Phase composition prediction of Al-Co-Cr-Fe-Ni high entropy alloy system based on thermodynamic and electronic properties calculations, Materials Today: Proceedings, (2021).
    [37] Y.-F. Kao, T.-J. Chen, S.-K. Chen, J.-W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Journal of Alloys and Compounds, 488 (2009) 57-64.
    [38] P. Ding, A. Mao, X. Zhang, X. Jin, B. Wang, M. Liu, X. Gu, Preparation, characterization and properties of multicomponent AlCoCrFeNi2.1 powder by gas atomization method, Journal of Alloys and Compounds, 721 (2017) 609-614.
    [39] C. Chen, S. Pang, Y. Cheng, T. Zhang, Microstructure and mechanical properties of Al20−xCr20+0.5xFe20Co20Ni20+0.5x high entropy alloys, Journal of Alloys and Compounds, 659 (2016) 279-287.
    [40] H.R. Sistla, J.W. Newkirk, F. Frank Liou, Effect of Al/Ni ratio, heat treatment on phase transformations and microstructure of AlxFeCoCrNi2−x (x=0.3, 1) high entropy alloys, Materials & Design, 81 (2015) 113-121.
    [41] Y.S. Na, K.R. Lim, H.J. Chang, J. Kim, Effect of Trace Additions of Ti on the Microstructure of AlCoCrFeNi-Based High Entropy Alloy, Science of Advanced Materials, 8 (2016) 1984-1988.
    [42] Y. Fu, J. Li, H. Luo, C. Du, X. Li, Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys, Journal of Materials Science & Technology, 80 (2021) 217-233.
    [43] Y. Yu, J. Wang, J. Li, H. Kou, H. Duan, J. Li, W. Liu, Tribological behavior of AlCoCrCuFeNi and AlCoCrFeNiTi0.5 high entropy alloys under hydrogen peroxide solution against different counterparts, Tribology International, 92 (2015) 203-210.
    [44] S. Jiang, Z. Lin, H. Xu, Y. Sun, Studies on the microstructure and properties of AlxCoCrFeNiTi1-x high entropy alloys, Journal of Alloys and Compounds, 741 (2018) 826-833.
    [45] Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Applied Physics Letters, 90 (2007).
    [46] M. Lobel, T. Lindner, T. Mehner, T. Lampke, Influence of Titanium on Microstructure, Phase Formation and Wear Behaviour of AlCoCrFeNiTix High-Entropy Alloy, Entropy (Basel), 20 (2018).
    [47] C. Si, X. Tang, X. Zhang, J. Wang, W. Wu, Characteristics of 7055Al alloy powders manufactured by gas-solid two-phase atomization: A comparison with gas atomization process, Materials & Design, 118 (2017) 66-74.
    [48] M. Löbel , T. Lindner , C. Kohrt and T. Lampke, Processing of AlCoCrFeNiTi high entropy alloy, 012015.
    [49] R.K. Duchaniya, U. Pandel, P. Rao, Coatings based on high entropy alloys: An overview, Materials Today: Proceedings, 44 (2021) 4467-4473.
    [50] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi-Principal-Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating, Advanced Engineering Materials, 6 (2004) 74-78.
    [51] L. Chen, K. Bobzin, Z. Zhou, L. Zhao, M. Öte, T. Königstein, Z. Tan, D. He, Wear behavior of HVOF-sprayed Al0.6TiCrFeCoNi high entropy alloy coatings at different temperatures, Surface and Coatings Technology, 358 (2019) 215-222.
    [52] A. Anupam, R.S. Kottada, S. Kashyap, A. Meghwal, B.S. Murty, C.C. Berndt, A.S.M. Ang, Understanding the microstructural evolution of high entropy alloy coatings manufactured by atmospheric plasma spray processing, Applied Surface Science, 505 (2020).
    [53] J.-K. Xiao, Y.-Q. Wu, J. Chen, C. Zhang, Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings, Wear, 448-449 (2020).
    [54] A. Nouri, A. Sola, Powder morphology in thermal spraying, Journal of Advanced Manufacturing and Processing, 1 (2019).
    [55] J.-T. Liang, K.-C. Cheng, Y.-C. Chen, S.-M. Chiu, C. Chiu, J.-W. Lee, S.-H. Chen, Comparisons of plasma-sprayed and sputtering Al0.5CoCrFeNi2 high-entropy alloy coatings, Surface and Coatings Technology, 403 (2020).
    [56] J. Goldstein, C. Lyman, D. Newbury, Scanning Electron Microscopy and X-Ray Microanalysis, Springer Science+Business Media, LLC, third edition
    [57] Electron Backscatter Diffraction (EBSD), JEOL.
    [58] C. Li, Y. Ma, J. Hao, Y. Yan, Q. Wang, C. Dong, P.K. Liaw, Microstructures and mechanical properties of body-centered-cubic (Al,Ti)0.7(Ni,Co,Fe,Cr)5 high entropy alloys with coherent B2/L21 nanoprecipitation, Materials Science and Engineering: A, 737 (2018) 286-296.
    [59] Y. Ma, B. Jiang, C. Li, Q. Wang, C. Dong, P. Liaw, F. Xu, L. Sun, The BCC/B2 Morphologies in AlxNiCoFeCr High-Entropy Alloys, Metals, 7 (2017).

    QR CODE