簡易檢索 / 詳目顯示

研究生: Ngetich Gilbert Kipkirui
Ngetich Gilbert Kipkirui
論文名稱: Al0.5CoCrFeNi2Ti0.5 高熵合金 (HEA) 粉末和薄膜塗層的合成與表徵
Synthesis and Characterizations of Al0.5CoCrFeNi2Ti0.5 High Entropy Alloy (HEA) Powders and Thin-film Coatings
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 鄭偉鈞
Wei-Chun Cheng
蔡哲瑋
Che-Wei Tsai
開物
Wu Kai
李志偉
Jyh-Wei Lee
丘群
Chun Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 174
中文關鍵詞: 高熵合金退熱處理火Al0.5CoCrFeNi2Ti0.5粉末相穩定性表面處理薄膜塗層濺射沉積氮化物薄膜
外文關鍵詞: High entropy alloy, annealing, Al0.5CoCrFeNi2Ti0.5, powder, phase stability, surface treatment, Thin-film coating, sputter deposition, nitride thin-films
相關次數: 點閱:218下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面工程的延新促進了高熵材料的使用,因為它們具有卓越的品質,包括良好的耐腐蝕性、高硬度、抗氧化性和改善的熱穩定性;然而,塗層的性能與製程條件息息相關,為了更好地了解高熵合金 (HEA) 的生長機制和成分變化,可以使用高功率脈衝磁控濺射 (HiPIMS) 和射頻磁控濺射技術來合成高熵合金薄膜。本研究探討Al0.5CoCrFeNi2Ti0.5 高熵合金粉末及薄膜性質。
    霧化後的Al0.5CoCrFeNi2Ti0.5 HEA粉體呈球形且合金元素均勻分布於基底中,晶體結構隨著粒徑的增加,由BCC相轉變為FCC相,其中粒徑從數微米到120微米以上不等。此外,透過退火處理研究了溫度對亞穩態合金粉末之微觀結構的影響,研究指出該結構在 300 ºC 以上和高達 500 ºC 的溫度下保持初始 BCC 相,但沿 (110) 平面排列的晶粒尺寸隨溫度上升而減小,然而當溫度達900 ºC 以上時,FCC 相成為主要結構,期間過渡 sigma 相在 700 和 800 ºC 之間沉澱。根據 EBSD 和EDS Mapping鑑定得知FCC 基質富含 (Fe, Cr) ,而 BCC 沉澱物富含 (Al, Ti) ,且因 Ti的添加所引起的強化效果使硬度增加了 20% 以上。
    此外,將Al0.5CoCrFeNi2Ti0.5合金粉末燒結成靶材,並分別利用 HiPIMS 和射頻磁控濺射製備薄膜。XRD分析結果表明塗層具有 FCC 結構,以 (111) 為優選結晶方向,並且它們的表面從顆粒形貌轉變為平整的微觀結構。透過 FWHM 和 AFM 分析,微晶尺寸和表面粗糙度分別降低到 13.27 和 1.33 nm。HiPIMS 濺射樣品具有最高的硬度,這表明沉積功率、壓力和技術極大地影響了所得薄膜,降低沉積壓力和功率有助於產生高質量的塗層,在抗腐蝕能力上亦具有優於 SS 304 基材的表現。
    後續更進一步將HiPIMS製備之合金薄膜進行氮化,氮氣和氬氣流速範圍為 0 到 30 sccm,隨著氮氣流速的增加,薄膜的結晶度從純 FCC 結構轉變為部分和完全非晶相。其中,在 15 sccm 的氮氣流量下,EDS 檢測到薄膜中最高的氮原子重量濃度為 10.35%,而在 12 sccm 的流量下,薄膜的硬度最高。氮的添加改善了 HEA 薄膜的特性,以 12 sccm 的流速沉積具有最佳性能。通過這種方式,氮氣流量變化可以作為控制Al0.5CoCrFeNi2Ti0.5 高熵合金薄膜微觀結構和物理性能的有效工具,拓展其應用範疇。
    本研究表明以HiPIMS 和射頻磁控濺射技術製備之Al0.5CoCrFeNi2Ti0.5 薄膜,具備塗層性能的控制效果,增加了高熵合金在極端環境中的潛在用途。


    Recent advances in surface engineering have boosted the usage of high-entropy materials due to their exceptional qualities, which include good corrosion, high hardness, oxidation resistance, and improved thermal stability. However, the characteristics of the resulting coatings are heavily reliant on the process conditions. To better understand the growth mechanism and composition variation of high entropy alloys (HEAs), high power impulse magnetron sputtering (HiPIMS) and RF magnetron sputtering techniques can be employed to synthesize HEA-based thin-film coatings. This study explores the synthesis of Al0.5CoCrFeNi2Ti0.5 HEA powders and thin-film coatings deposited onto selected substrates from a stoichiometric Al0.5CoCrFeNi2Ti0.5 HEA target.
    The as-atomized Al0.5CoCrFeNi2Ti0.5 HEA powders were spherical, with uniform element distribution, and changed phase from BCC to FCC, with particle sizes ranging from several to 120 µm. The influence of temperature on the microstructure of metastable HEA powders was investigated using annealing treatments. As the temperature increased, the structure maintained a primary BCC phase above 300 and up to 500 ºC grains arranged along the (110) plane decreased in size, and the FCC phase became dominant over 900 ºC, with transitional sigma phases precipitating between 700 and 800 ºC. The FCC matrix was (Fe, Cr)-rich, and the BCC precipitate was (Al, Ti)-rich, according to EBSD and elemental mappings. Because of the strengthening impact of solid solution and precipitation induced by Ti addition, the hardness of Al0.5CoCrFeNi2Ti0.5 HEA increased by more than 20% after annealing.
    Additionally, HEA powders of Al0.5CoCrFeNi2Ti0.5 were sintered into a target and used for sputtering different thin-film coatings via HiPIMS and RF magnetron sputtering. In the HiPIMS and RF magnetron sputtering thin-film processes, the results indicated the surfaces of HEA thin-film coatings transitioned from nodular to fine microstructures and had an FCC structure with a preferred orientation of (111). Crystallite sizes and surface roughness were reduced to 13.27 nm and 1.33 nm, respectively, based on AFM and FWHM analyses, indicating that the size distribution and crystallites are affected by deposition factors, which impact coating qualities. Lowering deposition pressures and power aided in producing high-quality coatings, and HiPIMS sputtered sample had the highest hardness signifying that the deposition power, pressure, and technique greatly influenced the resultant films. Additionally, the Al0.5CoCrFeNi2Ti0.5 HEA coatings enhanced the anticorrosion properties of the SS 304 substrate.
    The final section of the study concentrated on the deposition of Al0.5CoCrFeNi2Ti0.5 high-entropy nitride thin-film coatings via HiPIMS with nitrogen and argon flow rates ranging from 0 to 30 sccm. With the increase in nitrogen flow rate, the structures of films changed from pure FCC structure to partially and completely amorphous phases. Furthermore, at 15 and 12 sccm nitrogen flow rates, the film was found to have the highest nitrogen atomic weight concentration of 10.35% and the highest hardness, respectively. Notably, nitrogen flow rate variation can control Al0.5CoCrFeNi2Ti0.5 HEA films' microstructure and physical properties, enabling them to be tuned, making them suitable as marine surface protective coatings.
    In conclusion, characteristics of Al0.5CoCrFeNi2Ti0.5 HEA thin-film coatings can be tuned better by HiPIMS and RF magnetron sputtering, enhancing their suitability for usage in severe conditions

    Acknowledgment I Abstract II 摘要 IV Table of Contents VI Figure Captions X Table Captions XVI 1. Introduction 1 1.1. Research Motivation 1 1.2. Problem statement 2 1.3. Research objectives 2 1.4. Thesis organization 3 2. Literature review 4 2.1. Introduction to High Entropy Alloys (HEAs) 4 2.2. HEA properties 7 2.2.1. Core effects of high entropy alloys 7 2.3. High Entropy Alloys (HEAs) Powder and Bulk synthesis 11 2.3.1 The synthesis of HEA powders 11 2.3.2 Bulk HEA synthesis 13 2.4. HEA powders 20 2.4.1. Introduction 20 2.5. HEA Thin-film Coatings 21 2.5.1. Introduction 21 2.5.2. High Entropy Alloy Nitride Thin-Film Coatings 23 2.5.3. Growth of Thin-Film Coatings 24 2.5.4. The Microstructure evolution of thin-films 24 2.5.5. The evolution of amorphous thin-films 25 2.6. Thermodynamics of HEAs 26 2.7. HEA applications 29 2.8. Criteria for selecting Al0.5CoCrFeNi2Ti0.5 HEA 29 2.8.1. Design of Al0.5CoCrFeNi2Ti0.5 HEA 30 2.9 Conclusions 37 3. Methodology 38 3.1. Synthesis of Al0.5CoCrFeNi2Ti0.5 HEA powders 38 3.2. The heat treatment of as-atomized Al0.5CoCrFeNi2Ti0.5 HEA powders. 38 3.3. The preparation of high entropy alloy powder for characterization 39 3.4. Al0.5CoCrFeNi2Ti0.5 HEA sputtering target 39 3.5. Thin-film coating synthesis 40 3.5.2. HiPIMS and RF magnetron sputtering 40 3.6. Characterization techniques 43 3.6.1. Optical microscope 43 3.6.2. Scanning electron microscopy (SEM) 44 3.6.3. X-ray diffractometry (XRD) 45 3.6.4. Energy dispersive spectroscopy (EDS) 47 3.6.5. Atomic force microscopy (AFM) 48 3.6.6. Wear test 49 3.6.7. Electrochemical test 50 3.6.8. Nanoindentation test 51 4. Study of the stabilization process of gas atomized Al0.5CoCrFeNi2Ti0.5 high-entropy alloy in phase transformation 54 4.1. Introduction 54 4.1.1. Preparation of Al0.5CoCrFeNi2Ti0.5 HEA powders 56 4.1.2. Annealing treatment of as-atomized Al0.5CoCrFeNi2Ti0.5 HEA Powders. 57 4.2. Characterization of Al0.5CoCrFeNi2Ti0.5 HEA powders 58 4.3. Results and discussions 58 4.3.1. Characteristics of Al0.5CoCrFeNi2Ti0.5 HEA powders. 58 4.4. Conclusion 83 5. HiPIMS and RF magnetron sputtered Al0.5CoCrFeNi2Ti0.5 HEA thin-film coatings: synthesis and characterization 84 5.1. Introduction 84 5.2. Experimental procedures 86 5.2.1. Preparation of Al0.5CoCrFeNi2Ti0.5 thin-film coatings 86 5.3. Characterizations of Al0.5CoCrFeNi2Ti0.5 HEA thin-film coatings 87 5.4. Results and discussions 88 5.4.1. Characteristics of Al0.5CoCrFeNi2Ti0.5 HEA thin-film coatings 88 5.4.2. Nanomechanical properties of Al0.5CoCrFeNi2Ti0.5 HEA thin films 99 5.4.3. Potentiodynamic polarization measurements 101 5.4.4. Electrochemical impedance spectroscopy (EIS) 104 5.5. Conclusions 108 6. HiPIMs sputtered Al0.5CoCrFeFeNi2Ti0.5 HEA nitride thin-film coatings: Synthesis and characterizations 109 6.1. Introduction 109 6.2. Experimental procedures 111 6.2.1. Film deposition 111 6.3. Characterization of Al0.5CoCrFeNi2Ti0.5 HEA nitride thin-film coatings 112 6.4. Results and discussion 113 6.4.1. Microstructure and phase formation analysis 113 6.4.2. Nanomechanical properties of Al0.5CoCrFeNi2Ti0.5 HEA nitride thin-film coatings 121 6.4.3. Wear resistance of the (Al0.5CoCrFeNi2Ti0.5) N thin-film coatings 123 6.4.4. Electrochemical performances of the (Al0.5CoCrFeNi2Ti0.5)N thin-film coatings 125 6.4.5. Electrochemical impedance spectroscopy (EIS) 127 6.5. Conclusions 132 7. Conclusions and Future Research 134 7.1. Conclusions 134 7.2. Future research 136 References 138

    [1]. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials. 2004 May; 6(5):299-303.
    [2]. B. Cantor, I.T. Chang, P. Knight, A.J. Vincent. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A. 2004 Jul 1; 375:213-8.
    [3]. Yeh Jien-Wei. Recent progress in high entropy alloys. Ann. Chim. Sci. Mat. 2006; 31(6):633-48
    [4]. D.B. Miracle, O.N. Senkov. A critical review of high entropy alloys and related concepts. Acta Materialia. 2017 Jan 1; 122:448-511.
    [5]. K. C. Cheng, J. H. Chen, S. Stadler, Shih-Hsun Chen*. Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process. Applied Surface Science. 2019 Jun 1; 478:478-86.
    [6]. S. M. Chiu, T. T. Lin, R. K. Sammy, N. G. Kipkirui, Y. Q. Lin, J. T. Liang, Shih-Hsun Chen*. Investigation of phase constitution and stability of gas-atomized Al0.5CoCrFeNi2 high-entropy alloy powders. Materials Chemistry and Physics. 2022 Jan 1; 275:125194.
    [7]. W. R. Wang, W. L. Wang, J. W. Yeh. Phases, microstructure, and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures, Journal of Alloys and Compounds. 2014 Mar 15; 589:143-52.
    [8]. S. G. Ma, P. K. Liaw, M. C. GAO, J. W. Qiao, Z. H. Wang, Y. Zhang. Damping behavior of AlxCoCrFeNi high-entropy alloys by a dynamic mechanical analyzer. Journal of alloys and compounds. 2014 Aug 15; 604:331-9.
    [9]. Z. Xu, D. Y. Li, D. L. Chen. Effect of Ti on the wear behavior of AlCoCrFeNi high-entropy alloy during unidirectional and bi-directional sliding wear processes. Wear. 2021 Feb 12:203650.
    [10]. X. Chen, W. Xie, J. Zhu, Z. Wang , Y. Wang , Y. Ma , M. Yang , W. Jiang , H. Yu,Y. Wu, X. Hui. Influences of Ti additions on the microstructure and tensile properties of AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics. 2021 Jan 1; 128:107024.
    [11]. T. Lindner, M. Löbel, T. Mehner, D. Dietrich, T. Lampke. The phase composition and microstructure of AlxCoCrFeNiTi alloys for the development of high-entropy alloy systems. Metals. 2017 May; 7(5):162.
    [12]. P.M. Martin. Deposition technologies: an overview. Handbook of deposition technologies for films and coatings. 2010; 3.
    [13]. J. Hao, Y. Li, R. Liao R, G. Liu G, Q. Liao, C. Tang. Fabrication of Al2O3 nano-structure functional film on a cellulose insulation polymer surface and its space charge suppression effect. Polymers. 2017 Oct 12; 9(10):502.
    [14]. S. Mushtaq, J.C. Pickering, E.B.M. Steers, P. Horvath, J.A. Whitby, J. Michler, The role of oxygen in analytical glow discharges: GD-OES and GD-ToF-MS studies, Journal of Analytical Atomic Spectrometry, 26 (2011) 1746-1755.
    [15]. A. D. Akinwekomi, F .Akhtar. Bibliometric Mapping of Literature on High-Entropy/Multicomponent Alloys and Systematic Review of Emerging Applications. Entropy. 2022 Feb 24; 24(3):329.
    [16]. Y. F. Ye, Q. Wang, J. Lu, C.T. Liu, Y .Yang. High-entropy alloy: challenges and prospects. Materials Today. 2016 Jul 1; 19(6):349-62.
    [17]. J. W. Yeh. Alloy design strategies and future trends in high-entropy alloys. Jom. 2013 Dec; 65(12):1759-71.
    [18]. P. Voňka, J. Leitner. Calculation of chemical equilibria in heterogeneous multicomponent systems. Calphad. 1995 Mar 1; 19(1):25-36.
    [19]. B. S. Murty, J.W. Yeh, S. Ranganathan, P. P. Bhattacharjee. High-entropy alloys. Elsevier; 2019 Mar 16
    [20]. M.A. Tunes, H. Le, G. Greaves, C.G. Schön, H. Bei, Y. Zhang, P.D. Edmondson, S.E. Donnelly. Investigating sluggish diffusion in a concentrated solid solution alloy using ion irradiation with in situ TEM. Intermetallics. 2019 Jul 1; 110:106461.
    [21]. B. X. Cao, C. Wang, T. Yang, C.T. Liu. Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scripta Materialia. 2020 Oct 1; 187:250-5
    [22]. G. Parker. Encyclopedia of materials: science and technology.
    [23]. A. Asgarian, C. Wu, D. Li, M. Bussmann, K. Chattopadhyay, S. Lemieux, B. Girard, F. Lavallee, V. Paserin. Experimental and computational analysis of a water spray; application to molten metal atomization. InAdvances in powder metallurgy and particulate materials (Proceedings of the 2018 International Conference on Powder Metallurgy & Particulate Materials) 2018 (pp. 126-137)
    [24]. H. Zhang, L. Zhang, G. Dong, Z. Liu, M. Qin, X. Qu, Y. Lü. Effects of annealing on high velocity compaction behavior and mechanical properties of iron-base PM alloy. Powder Technology. 2016 Jan 1; 288:435-40.
    [25]. X. G. Li, Q. Zhu, S. Shu, J. Z. Fan, S. M. Zhang. Fine spherical powder production during gas atomization of pressurized melts through melt nozzles with a small inner diameter. Powder Technology. 2019 Nov 1; 356:759-68.
    [26]. N. M. Griesenauer, S. R. Lyon, C. A. Alexander. Vacuum induction melting of titanium. Journal of Vacuum Science and Technology. 1972 Nov; 9(6):1351-5.
    [27]. C .Woodside, P. E. King, C. Nordlund. Arc distribution during the vacuum arc remelting of Ti-6Al-4V. Metallurgical and Materials Transactions B. 2013 Feb; 44(1):154-65.
    [28]. G. Mucsi. A review on mechanical activation and mechanical alloying in a stirred media mill. Chemical Engineering Research and Design. 2019 Aug 1; 148:460-74.
    [29]. F. Shi. Introductory chapter: Basic theory of magnetron sputtering. In Magnetron Sputtering 2018 Nov 5. IntechOpen.
    [30]. H. Najafi-Ashtiani, B. Akhavan, F. Jing, M.M. Bilek. Transparent conductive dielectric− metal− dielectric structures for electrochromic applications fabricated by high-power impulse magnetron sputtering. ACS applied materials & interfaces. 2019 Mar 29; 11(16):14871-81.
    [31]. X. Wang, L. Lei, H. Yu. A review on microstructural features and mechanical properties of wheels/rails cladded by laser cladding. Micromachines. 2021 Feb 4; 12(2):152.
    [32]. De Bonis, R.Teghil.Ultra-short pulsed laser deposition of oxides, borides, and carbides of transition elements. Coatings. 2020 May; 10(5):501.
    [33]. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia. 2013 Sep 1; 61(15):5743-55.
    [34]. Y.C. Hsu, C.L. Li, C.H. Hsueh. Effects of Al addition on microstructures and mechanical properties of CoCrFeMnNiAlx high entropy alloy films. Entropy. 2019 Dec 18; 22(1):2.
    [35]. W.B. Liao, H. Zhang, Z.Y. Liu, P.F. Li, J.J. Huang, C.Y. Yu, Y. Lu. High strength and deformation mechanisms of Al0.3CoCrFeNi high-entropy alloy thin films fabricated by magnetron sputtering. Entropy. 2019 Feb 4; 21(2):146.
    [36]. L.R. Shaginyan, V. F. Britun, N. A. Krapivka, S. A. Firstov, A. V. Kotko, V. F. Gorban. The properties of Cr–Co–Cu–Fe–Ni alloy films deposited by magnetron sputtering. Powder Metallurgy and Metal Ceramics. 2018 Sep; 57(5):293-300.
    [37]. Y. E. Ke, L. C. Chang, W. Kai, Y. Chen. Oxidation behavior and interdiffusion of TaAl multilayer films and Inconel 617 alloy. Surface and Coatings Technology. 2021 Jan 15; 405:126684.
    [38]. S. Fang, C. Wang, C.L. Li, J.H. Luan, Z. B. Jiao, C.T. Liu, C.H. Hsueh. Microstructures and mechanical properties of CoCrFeMnNiVx high entropy alloy films. Journal of Alloys and Compounds. 2020 Apr 15; 820:153388.
    [39]. L. Liu, J.B. Zhu, C. Hou, J.C. Li, Q. Jiang. Dense and smooth amorphous films of multicomponent FeCoNiCuVZrAl high-entropy alloy deposited by direct current magnetron sputtering. Materials & Design. 2013 Apr 1; 46:675-9.
    [40]. V. Braic, A. Vladescu, M. Balaceanu, C.R. Luculescu, M. Braic. Nanostructured multi-element (TiZrNbHfTa) N and (TiZrNbHfTa) C hard coatings. Surface and Coatings Technology. 2012 Oct 25; 211:117-21.
    [41]. Z.C. Chang, S.C. Liang, S. Han, Y.K. Chen, F.S. Shieu. Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010 Aug 15; 268(16):2504-9.
    [42]. C.H. Lai, S.J. Lin, J.W. Yeh, S.Y. Chang. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surface and Coatings Technology. 2006 Dec 4; 201(6):3275-80.
    [43]. Anders. A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films. 2010 May 31; 518(15):4087-90.
    [44]. A. Movchan and A. V. Demchishin. Study the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide. Physics of Metals and Metallography
    [45]. Michaelsen, C. Gente, and R. Bormann. The thermodynamics of amorphous phases in immiscible systems: The example of sputter-deposited Nb-Cu alloys. Journal of Applied Physics, 81:6024, 1997.
    [46]. H. Hecht, G. Weigang, S. Eickert, and U. Geyer. Formation area of thin amorphous Zr-Mn and Zr-Ta films prepared by condensation.Zeitschrift für Physik B, 100:47, and 1996
    [47]. Y. Zhang, Y.J. Zhou, J.P.Lin, G. L. Chen, P.K. Liaw. Solid‐solution phase formation rules for multi‐component alloys. Advanced engineering materials. 2008 Jun; 10(6):534-8.
    [48]. K. K. Tseng, C. C. Juan, S. Tso, H. C. Chen, C. W. Tsai, J. W Yeh. Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr alloys. Entropy. 2018 Dec 25; 21(1):15
    [49]. S. Guo, C. Ng, J. Lu, C. T. Liu. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of applied physics. 2011 May 15; 109(10):103505.]
    [50]. M. Saha. A brief discussion on High-entropy alloys vs. Compositionally Complex alloys
    [51]. A. K. Singh, A. Subramaniam. On the formation of disordered solid solutions in multi-component alloys. Journal of Alloys and Compounds. 2014 Feb 25; 587:113-9.
    [52]. X. Yang, Y. Zhang. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics. 2012 Feb 15; 132(2-3):233-8
    [53]. M. G. Poletti, L. J. Battezzati. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta materialia. 2014 Aug 15; 75:297-306
    [54]. Z. Leong, Y. Huang, R. Goodall, I.Todd. Electronegativity and enthalpy of mixing biplots for High Entropy Alloy solid solution prediction. Materials Chemistry and Physics. 2018 May 1; 210:259-68
    [55]. S. Sonal, J. Lee. Recent Advances in Additive Manufacturing of High Entropy Alloys and Their Nuclear and Wear-Resistant Applications. Metals. 2021 Dec 8; 11(12):1980
    [56]. L. Xie, P. Brault, A.L. Thomann, X. Yang, Y. Zhang, G. Shang. Molecular dynamics simulation of Al–Co–Cr–Cu–Fe–Ni high entropy alloy thin film growth, Intermetallics, 68 (2016) 78-86.
    [57]. Y.-L. Chen, Y.-H. Hu, C.-W. Tsai, C.-A. Hsieh, S.-W. Kao, J.-W. Yeh, T.-S. Chin, S.-K. Chen. Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying, Journal of Alloys and Compounds, 477 (2009) 696-705.
    [58]. J. T Liang, K.C. Cheng, Y. C. Chen, S. M. Chiu, C. Chiu, J. W. Lee, S.H. Chen. Comparisons of plasma-sprayed and sputtering Al0.5CoCrFeNi2 high-entropy alloy coatings. Surface and Coatings Technology. 2020 Dec 15; 403:126411.
    [59]. X. C. Tong. Advanced materials for integrated optical waveguides. Cham: Springer International Publishing; 2014.
    [60]. K. Sarakinos, J. Alami, S. Konstantinidis. High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surface and coatings technology. 2010 Feb 25; 204(11):1661-84
    [61]. Y. Xu, G. Li, Y. Xia. Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS. Applied Surface Science. 2020 Sep 1; 523:146529
    [62]. R. Bosco, Van Den Beucken J, Leeuwenburgh S, Jansen J. Surface engineering for bone implants: a trend from passive to active surfaces. Coatings. 2012 Jul 2; 2(3):95-119.
    [63]. M. T. Hardy, B.P. Downey, N. Nepal, D.F. Storm, D.S. Katzer, D.J. Meyer. Epitaxial ScAlN grown by molecular beam epitaxy on GaN and SiC substrates. Applied Physics Letters. 2017 Apr 17; 110(16):162104.
    [64]. S. Berg, Nyberg. Fundamental understanding and modeling of reactive sputtering processes. Thin solid films. 2005 Apr 8; 476(2):215-30.
    [65]. S. Mushtaq, J.C. Pickering, E.B. Steers, P. Horvath, J.A. Whitby, J. Michler. The role of oxygen in analytical glow discharges GD-OES and GD-ToF-MS studies. Journal of Analytical Atomic Spectrometry. 2011; 26(9):1746-55.
    [66]. J. Hao, Y. Li, R. Liao, G. Liu, Q. Liao, C. Tang. Fabrication of Al2O3 nano-structure functional film on a cellulose insulation polymer surface and its space charge suppression effect. Polymers. 2017 Oct 12; 9(10):502.
    [67]. D. Stokes. Principles and practice of variable pressure/environmental scanning electron microscopy (VP-ESEM). John Wiley & Sons; 2008 Nov 20.
    [68]. M. J.Walock. Nanocomposite coatings based on quaternary metal-nitrogen and nanocarbon systems. The University of Alabama at Birmingham; 2012.
    [69]. N. E.Widjonarko. Introduction to advanced X-ray diffraction techniques for polymeric thin films. Coatings. 2016 Nov 1; 6(4):54.
    [70]. J. Goldstein, editor. Practical scanning electron microscopy: electron and ion microprobe analysis. Springer Science & Business Media; 2012 Dec 6.
    [71]. A. A. Hilal. Microstructure of concrete. High performance concrete technology and applications. 2016 Oct 5:3-24.
    [72]. K. Hammond, M. G. Ryadnov, B.W. Hoogenboom. Atomic force microscopy to elucidate how peptides disrupt membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2021 Jan 1; 1863(1):183447.
    [73]. J. L. Hay. Instrumented indentation testing. ASM handbook of mechanical testing and evaluation. 2000.
    [74]. C.V. Cushman, S. Chatterjee, G. H. Major, N. J. Smith, A. Roberts, M. R. Linford. Trends in Advanced XPS Instrumentation. Near-Ambient Pressure XPS in Vac. Technol Coatings August. 2017.
    [75]. N. Romanos, M. Kalogerini, E. P. Koumoulos, A. K. Morozinis, M. Sebastiani, and C. Charitidis. Innovative Data Management in advanced characterization: Implications for materials design. Materials Today Communications. 2019 Sep 1; 20:100541.
    [76]. W. C. Oliver, G. M. Pharr. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of materials research. 1992 Jun; 7(6):1564-83.
    [77]. Y. Wang, S. Ma, X. Chen, J. Shi, Y. Zhang, J. Qiao. Optimizing mechanical properties of AlCoCrFeNiTix high-entropy alloys by tailoring microstructures. Acta Metallurgica Sinica (English Letters). 2013 Jun; 26(3):277-84.
    [78]. Y. Yu, P. Shi, K. Feng, J. Liu, J. Cheng, Z. Qiao, J. Yang, J. Li, W. Liu. Effects of Ti and Cu on the microstructure evolution of AlCoCrFeNi high-entropy alloy during heat treatment. Acta Metallurgica Sinica (English Letters). 2020 Jan 14:1-4.
    [79]. P. Sharma, V.K. Dwivedi, S.P. Dwivedi. Development of high entropy alloys: A review. Materials Today: Proceedings. 2021 Jan 20.
    [80]. M. Laurent-Brocq, A. Akhatova, L. Perrière, S. Chebini, X. Sauvage, E.Leroy, Y. Champion. Insights into the phase diagram of the CrMnFeCoNi high entropy alloy. Acta Materialia. 2015 Apr 15; 88:355-65.
    [81]. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Materialia. 2011 Jan 1; 59(1):182-90.
    [82]. H. Qi, X. Zhou, J. Li, Y. Hu, L. Xu. Performance Testing and Rapid Solidification Behavior of Stainless Steel Powders Prepared by Gas Atomization. Materials. 2021 Jan; 14(18):5188.
    [83]. Y. J. Zhou, Y. Zhang, Y. L. Wang, G. L. Chen. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied physics letters. 2007 Apr 30; 90(18):181904.
    [84]. A. Verma, J. B. Singh, S. D. Kaushik, V. Siruguri. Lattice parameter variation and its effect on precipitation behavior of ordered Ni2 (Cr, Mo) phase in Ni-Cr-Mo alloys. Journal of Alloys and Compounds. 2020 Jan 15; 813:152195.
    [85]. M. Löbel, T. Lindner, T. Mehner, T. Lampke. Microstructure and wear resistance of AlCoCrFeNiTi high-entropy alloy coatings produced by HVOF. Coatings. 2017 Sep; 7(9):144.
    [86]. Q. Li, S. Zhao, X. Bao, Y. Zhang, Y. Zhu, C. Wang, Y. Lan, Y. Zhang, T. Xia. Effects of AlCoCrFeNiTi high-entropy alloy on microstructure and mechanical properties of pure aluminum. Journal of Materials Science & Technology. 2020 Sep 1; 52:1-1.
    [87]. Y. S. Na, K.R. Lim, H. J. Chang, J. Kim. Effect of trace additions of Ti on the microstructure of AlCoCrFeNi-based high entropy alloy. Science of Advanced Materials. 2016 Oct 1; 8(10):1984-8.
    [88]. M. H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, J.W. Yeh. The criterion for sigma phase formation in Cr-and V-containing high-entropy alloys. Materials Research Letters. 2013 Dec 1; 1(4):207-12.
    [89]. T. T. Shun, L.Y. Chang, M.H. Shiu. Microstructures and mechanical properties of multiprincipal component CoCrFeNiTix alloys. Materials Science and Engineering: A. 2012 Oct 30; 556:170-4.
    [90]. Y. Geng, H. Tan, J. Cheng, J. Chen, Q. Sun, S. Zhu, J. Yang. Microstructure, mechanical and vacuum high-temperature tribological properties of AlCoCrFeNi high entropy alloy based solid-lubricating composites, Tribology International. 2020 Nov 1; 151:106444.
    [91]. C. M. Lin, H. L. Tsai. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy. Intermetallics. 2011 Mar 1; 19(3):288-94.
    [92]. Y. Zhang, Y. J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw. Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10 (2008) 534–538
    [93]. Z. Tang, T. Yuan, C.W. Tsai, J.W. Yeh, C.D. Lundin, P.K. Liaw. Fatigue behaviour of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy, Acta Mater. 99 (2015) 247–258
    [94]. M. H. Tsai, J. W. Yeh. High-entropy alloys: a critical review, Materials Research Letters 2 (2014) 107–123.
    [95]. S. Q. Xia, Z. Wang, T. F. Yang, Y. Zhang. Irradiation behavior in high entropy alloys, J. Iron Steel Res. Int. 22 (2015) 879–884.
    [96]. S. K. Bachani, C. J. Wang, B. S. Lou, L. C. Chang, J. W. Lee. Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content. Surface and Coatings Technology. 2020 Dec 15; 403:126351.
    [97]. Z. Tang , M. C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K.A. Dahmen, P.K. Liaw, T. Egami. Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems, JOM 65 (2013) 1848–1858.
    [98]. C. Dang, J. U. Surjadi, L. GAO, Y. Lu. Mechanical properties of nanostructured CoCrFeNiMn high-entropy alloy (HEA) coating. Frontiers in Materials. 2018 Aug 13; 5:41.
    [99]. N. G. Kipkirui, T. T. Lin, R. S. Kiplangat, and Shih-Hsun Chen*. Study of the stabilization process of gas atomized Al0.5CoCrFeNi2Ti0.5 high-entropy alloy in phase transformation. J. Alloys Compd., vol. 905, p. 164230, 2022.
    [100]. N. A. Khan, B. Akhavan, C. Zhou, H. Zhou, L. Chang, Y. Wang, Y. Liu, M. M. Bilek, Z. Liu . High entropy nitride (HEN) thin films of AlCoCrCu0.5FeNi deposited by reactive magnetron sputtering. Surface and Coatings Technology. 2020 Nov 25; 402:126327.
    [101]. Y. Y. Chen, S. B. Hung, C. J. Wang, W. C. Wei, J. W. Lee. High temperature electrical properties and oxidation resistance of V-Nb-Mo-Ta-W high entropy alloy thin films. Surface and Coatings Technology. 2019 Oct 15; 375:854-63.
    [102]. Y. Xu, G. Li, Y. Xia. Synthesis and characterization of super-hard AlCrTiVZr high-entropy alloy nitride films deposited by HiPIMS. Applied Surface Science. 2020 Sep 1; 523:146529.
    [103]. W. Liao, S. Lan, L. Gao, H. Zhang, S. Xu, J. Song, X. Wang, Y. Lu, Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering, Thin Solid Films 638 (2017) 383–388.
    [104]. W. Li, P. Liu, P. K. Liaw. Microstructures and properties of high-entropy alloy films and coatings: a review, Materials Research Letters 6 (2018) 199–229.
    [105]. N. A. Khan, B. Akhavan, H. Zhou, L. Chang, Y. Wang, L. Sun, M. M. Bilek, Z. Liu. High entropy alloy thin films of AlCoCrCu0.5FeNi with controlled microstructure, Appl. Surf. Sci. 495 (2019) 143560.
    [106]. N. A. Khan, B. Akhavan, C. Zhou, H. Zhou, L. Chang, Y. Wang, Y. Liu, L. Fu, M. M. Bilek, Z. Liu. RF magnetron sputtered AlCoCrCu0.5FeNi high entropy alloy (HEA) thin films with tuned microstructure and chemical composition, J. Alloys Compd. 836 (2020) 155348.
    [107]. M. Hezam, N. Tabet, A. Mekki. Synthesis and characterization of DC magnetron sputtered ZnO thin films under high working pressures. Thin Solid Films. 2010 Oct 1; 518(24):e161-4.
    [108]. A. Thakur, S. J. Kang, J.Y. Baik, H. Yoo, I.J. Lee, H. K. Lee, S . Jung, J. Park, H. J. Shin. Effects of working pressure on morphology, structural, electrical, and optical properties of a-InGaZnO thin films. Materials Research Bulletin. 2012 Oct 1; 47(10):2911-4
    [109]. I. Petrov, P.B. Barna, L. Hultman, J.E. Greene. Microstructural evolution during film growth. J. Vac. Sci. Technol. A. 2003; 21:S117–S128. doi: 10.1116/1.1601610
    [110]. M. Hu, Q. Cao, X. Wang, D. Zhang, J.Z. Jiang. Fluence-dependent microstructure and nanomechanical property in Co-Ni-V medium entropy alloy thin films. Scripta Materialia. 2021 Oct 1; 203:114050.
    [111]. T. H. Fang, W.L. Li, N.R. Tao, K. Lu. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science. 2011 Mar 25; 331(6024):1587-90.
    [112]. A. L. Patterson. The Scherrer formula for X-ray particle size determination. Physical review. 1939 Nov 15; 56(10):978.
    [113]. D. C. Tsai, Z. C. Chang, B. H. Kuo, Y. S. Deng, E. C. Chen, F. S. Shieu. Effects of sputtering power on microstructure and mechanical properties of TiVCr films. Vacuum. 2016 Mar 1; 125:227-33.
    [114]. M. J. Xia, H. Y. Ding, G. H. Zhou, Y. Zhang, and G. Z. Zhuang. Effects of Power on Microstructure and Hardness of Sputtered TiB2 Films. Advanced Materials Research 2013 (Vol. 647, pp. 697-700). Trans Tech Publications Ltd.
    [115]. W. R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallic. 2012 Jul 1; 26:44-51.
    [116]. E. E. Stansbury, R. A. Buchanan. Fundamentals of electrochemical corrosion. ASM international; 2000.
    [117]. C. P. Lee, C. C. Chang, Y. Y. Chen, J. W. Yeh, H. C. Shih. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments, Corros. Sci. 50 (2008) 2053–2060.
    [118]. M. Ebrahim-Ghajari, S.R. Allahkaram, S. Mahdavi. Corrosion behaviour of electrodeposited nanocrystalline Co and Co/ZrO2 nanocomposite coatings. Surf. Eng., 31 (2015), pp. 251-257
    [119]. R. Walter, M.B. Kannan. Influence of surface roughness on the corrosion behaviour of magnesium alloy. Materials & Design. 2011 Apr 1; 32(4):2350-4.
    [120]. A. S. Aghdam, S.R. Allahkaram, S. Mahdavi. Corrosion and tribological behavior of Ni–Cr alloy coatings electrodeposited on low carbon steel in Cr (III)–Ni (II) bath. Surface and Coatings Technology. 2015 Nov 15; 281:144-9.
    [121]. K. Rohith, S. Shreyas, K.V. Appaiah, R. V. Sheshank, B. B. Ganesha, B. Vinod. Recent material advancement for marine application. Materials Today: Proceedings. 2019 Jan 1; 18:4854-9.
    [122]. B. Hou, X. Li, X. Ma, C. Du, D. Zhang, M. Zheng, W. Xu, D. Lu, F. Ma. The cost of corrosion in China. npj Materials Degradation. 2017 Jul 25; 1(1):1-0.
    [123]. S. Jin, A. Atrens. Passive films on stainless steels in aqueous media. Applied Physics A. 1990 Mar; 50(3):287-300.
    [124]. M. Santamaria, G. Tranchida, F. Di Franco. Corrosion resistance of passive films on different stainless steel grades in food and beverage industry. Corrosion Science. 2020 Aug 15; 173:108778.
    [125]. X. Yang, C. Du, H. Wan, Z. Liu, X. Li. Influence of sulfides on the passivation behavior of titanium alloy TA2 in simulated seawater environments. Applied Surface Science. 2018 Nov 15; 458:198-209.
    [126]. J. Pang, D.J. Blackwood. Corrosion of titanium alloys in high temperature near anaerobic seawater. Corrosion Science. 2016 Apr 1; 105:17-24.
    [127]. X. Sui, R. Xu, J. Liu, S. Zhang, Y. Wu, J. Yang, J. Hao. Tailoring the tribocorrosion and antifouling performance of (Cr, Cu)-GLC coatings for marine application. ACS applied materials & interfaces. 2018 Oct 1; 10(42):36531-9.
    [128]. H. Kovacı, Y. B. Bozkurt, A. F. Yetim, Ö. Z. Baran, A. Çelik. Corrosion and tribocorrosion properties of duplex surface treatments consisting of plasma nitriding and DLC coating. Tribology International. 2021 Apr 1; 156:106823.
    [129]. P. A. Dearnley, B. Mallia. The chemical wear (corrosion-wear) of novel Cr based hard coated 316L austenitic stainless steels in aqueous saline solution. Wear. 2013 Aug 30; 306(1-2):263-75.
    [130]. M. M. Liu, H.X. Hu, Y. G. Zheng. Effects of three sealing methods of aluminum phosphate sealant on corrosion resistance of the Fe-based amorphous coating. Surface and Coatings Technology. 2017 Jan 15; 309:579-89.
    [131]. X. Huang, L. Yu, Y. Dong. Corrosion resistance and superhydrophobic properties of the organic hybrid coating on cast Al–Si alloy. Progress in Organic Coatings. 2020 Feb 1; 139:105446.
    [132]. A. S. Ang, C. C. Berndt, M. L. Sesso, A. Anupam, R. S. Kottada, B. S. Murty. Plasma-sprayed high entropy alloys: Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi. Metallurgical and Materials Transactions A. 2015 Feb; 46(2):791-800.
    [133]. J. K. Xiao, H. Tan, Y. Q. Wu, J. Chen, C. Zhang. Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying. Surface and Coatings Technology. 2020 Mar 15; 385:125430.
    [134]. S. Yin, W. Li, B. Song, X. Yan, M. Kuang, Y. Xu, K. Wen, R. Lupoi. Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying. Journal of Materials Science & Technology. 2019 Jun 1; 35(6):1003-7.
    [135]. A. Baptista, F. J. Silva, J. Porteiro, J. L. Míguez, G. Pinto, L .Fernandes. On the physical vapour deposition (PVD): evolution of magnetron sputtering processes for industrial applications. Procedia Manufacturing. 2018 Jan 1; 17:746-57.
    [136]. F. Zhou, Q. Ma, Q. Wang, Z. Zhou, L. K. Li. Electrochemical and tribological properties of CrBCN coatings with various B concentrations in artificial seawater. Tribology International. 2017 Dec 1; 116:19-25.
    [137]. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, Z. P. Lu. Microstructures and properties of high-entropy alloys. Progress in materials science. 2014 Apr 1; 61:1-93.
    [138]. X. H. Yan, J. S. Li, W. R. Zhang, Y. Zhang. A brief review of high-entropy films. Materials Chemistry and Physics. 2018 May 1; 210:12-9.
    [139]. Y. Fu, J. Li, H. Luo, C. Du, X. Li. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. Journal of Materials Science & Technology. 2021 Jul 30; 80:217-33.
    [140]. H. Luo, Z. Li, A.M. Mingers, D. Raabe. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corrosion Science. 2018 Apr 15; 134:131-9.
    [141]. H. T. Hsueh, W. J. Shen, M. H. Tsai, J. W. Yeh. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr) 100− xNx. Surface and Coatings Technology. 2012 May 25; 206(19-20):4106-12.
    [142]. J. T. Derksen, F. P. Cuperus, Kolster P. Renewable resources in coatings technology: a review. Progress in Organic Coatings. 1996 Jan 1; 27(1-4):45-53.
    [143]. J. W. Yeh, S. J. Lin, M. H. Tsai, S. Y. Chang. High-entropy coatings. InHigh-Entropy Alloys 2016 (pp. 469-491). Springer, Cham.
    [144]. S. K. Bachani, C. J. Wang, B. S. Lou, L. C. Chang, J. W. Lee. Fabrication of TiZrNbTaFeN high-entropy alloys coatings by HiPIMS: Effect of nitrogen flow rate on the microstructural development, mechanical and tribological performance, electrical properties and corrosion characteristics. Journal of Alloys and Compounds. 2021 Aug 25; 873:159605.
    [145]. N. G. Kipkirui, T. T. Lin, R. S. Kiplangat, J. W. Lee, S. H. Chen. HiPIMS and RF magnetron sputtered Al0.5CoCrFeNi2Ti0.5 HEA thin-film coatings: Synthesis and characterization. Surface and Coatings Technology. 2022 Oct 20:128988.
    [146]. W. Liao, S. Lan, L. Gao, H. Zhang, S. Xu, J. Song, X. Wang, Y. Lu, Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering, Thin Solid Films 638 (2017) 383–388.
    [147]. J. Li, Y. Chen, Y. Zhao, X. Shi, S. Zhang. Super-hard (MoSiTiVZr) Nx high-entropy nitride coatings. Journal of Alloys and Compounds. 2022 Dec 10; 926:166807.
    [148]. W. Li, P. Liu, P.K. Liaw. Microstructures and properties of high-entropy alloy films and coatings: a review. Materials Research Letters. 2018 Apr 3; 6(4):199-229.
    [149]. T. Elangovan, P. Kuppusami, R. Thirumurugesan, V. Ganesan, E. Mohandas, D. Mangalaraj. Nanostructured CrN thin films prepared by reactive pulsed DC magnetron sputtering. Materials Science and Engineering: B. 2010 Feb 25; 167(1):17-25.
    [150]. J. Houska. Maximum N content in a-CNx by ab-initio simulations. Acta Materialia. 2019 Aug 1; 174:189-94.
    [151]. J. J. Jeong, S. K. Hwang, C. M. Lee. Nitrogen flow rate dependence of the growth morphology of TiAlN films deposited by reactive sputtering. Surface and Coatings Technology. 2002 Mar 1; 151:82-5.
    [152]. B. Ren, S.Q. Yan, R.F. Zhao, Z.X. Liu. Structure and properties of (AlCrMoNiTi) Nx and (AlCrMoZrTi) Nx films by reactive RF sputtering. Surface and Coatings Technology. 2013 Nov 25; 235:764-72.
    [153]. L. G. Sun, G. Wu, Q. Wang, J. Lu. Nanostructural metallic materials: Structures and mechanical properties. Materials Today. 2020 Sep 1; 38:114-35.
    [154]. C. P. Lee, C. C. Chang, Y. Y. Chen, J. W. Yeh, H. C. Shih. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments, Corros. Sci. 50 (2008) 2053–2060.
    [155]. S. K. Padamata, A. Yasinskiy, V. Yanov, G. Saevarsdottir. Magnetron Sputtering High-Entropy Alloy Coatings: A Mini-Review. Metals. 2022 Feb 11; 12(2):319.
    [156]. J. Gong, Y. Iwasaki, Y. Osada, K. Kurihara, Y. Hamai. Friction of gels. 3. Friction on solid surfaces. J. Phys. Chem. B 1999, 103,
    6001–6006.
    [157]. R. Ganesan, B. Akhavan, J.G. Partridge, D.G. McCulloch, D.R. McKenzie, M.M.M. Bilek, Evolution of target condition in reactive HiPIMS as a function of duty cycle: An opportunity for refractive index grading, Journal of Applied Physics, 121 (2017) 171909.
    [158]. J. Paulitsch, M. Schenkel, T. Zufraß, P.H. Mayrhofer, W.D. Münz, Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit, Thin Solid Films, 518 (2010) 5558-5564.

    QR CODE