簡易檢索 / 詳目顯示

研究生: 黃祥峰
Siang-Fong Huang
論文名稱: 鈷基超合金(Haynes 188)沉積氯化鈉之熱腐蝕
The Hot Corrosion of Cobalt-Based Alloy(Haynes 188) with NaCl Deposits
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 開物
Wu Kai
鄭偉鈞
Wei-Chun Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 97
中文關鍵詞: 熱腐蝕氯化鈉碳化鉻
外文關鍵詞: hot corrosion, NaCl, Cr23C6
相關次數: 點閱:185下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用鈷基超合金Haynes 188於750、800及850 ℃靜滯空氣中進行氯化鈉沉積鹽高溫腐蝕試驗,探討含氯化鈉環境下的高溫腐蝕機制。
    實驗結果顯示, Haynes 188氯化鈉腐蝕後生成的氧化皮膜不具保護性。Haynes 188 在750~850 ℃溫度間會在晶界上析出Cr23C6, Cr23C6優先與氯反應分解產生嚴重之沿晶腐蝕,並在腐蝕路徑形成鉻耗乏區。隨時間的增加,氯化物的揮發造成皮膜與基材間氯分壓降低,進而使腐蝕反應速率減緩。溫度愈高氯化物揮發愈加明顯,因此850 ℃之動力學曲線較800 ℃早進入腐蝕反應較慢的第二階段中。Haynes 188含14%鎢,鎢經氯化鈉高溫腐蝕所形成的氧化物及氯化物當實驗溫度超過750 ℃後都具有相當高的揮發性,反映在動力學曲線上呈現了明顯的重量損失(weight loss)。
    與先前鐵基合金之氯化鈉高溫腐蝕研究比較,對合金基材元素而言,鈷具有較鐵高的抗氯化鈉腐蝕性;對430、304、310、253MA、353MA、Haynes 188六種合金而言,添加鎳較添加鉻能提升合金對氯化鈉腐蝕的抗性。


    The purpose of this work is to study the hot-corrosion behavior of a Co-based superalloy (Haynes 188; HA-188) over the temperature range of 750 – 850 ℃ in static air with a 2 mg/cm2 NaCl deposit, and in particular, to systematically understand the hot-corrosion mechanism of the alloy.
    The results showed that the oxide-scales formed on the HA-188 alloy after hot corrosion were nonprotective. In addition, the precipictates of Cr23C6 along grain boundaries of the alloy preferentially reacted with chlorine, which resulted in a severe granular corrosion and a Cr-depleted zone. The volatilization of the chlorides gradually increased with increasing temperature, which in turn reduced the partial pressures of chlorine in the scale/substrate boundary, thereby leading a slower corrosion rate at 850 ℃. Haynes 188 contained with 14% tungsten, the oxide and chloride of tungsten that formated after NaCl hot corrosion have high volatility, caused the largely weight loss on the dynamics curve.
    In addition it was found that the HA-188 alloy exhibited a better hot-corrosion resistance, as compared to those of the Fe-based steels (430SS, 304SS, 310SS, 253MA, and 353MA) under the previous studies in our laboratory. It may be concluded that the hot-corrosion resistance of the Co-based superalloy is much superior to those of Fe-based steels.

    第一章 前言 1 第二章 文獻回顧 3 2.1 鈷基超合金 3 2.2 合金元素對HAYNES 188之影響 5 2.3 金屬之氧化 7 2.4 金屬於氯化物或含氯氣氛中之高溫腐蝕 12 2.5 合金之高溫氧化及熱腐蝕 15 2.5.1 鈷鉻合金 15 2.5.2 鎳鉻合金 16 2.5.3 鐵鉻合金 17 2.5.4 鐵鎳鉻合金 19 2.5.5 碳化物 21 2.6 腐蝕產物色澤 22 第三章 實驗方法 24 3.1 試片準備 24 3.2 實驗流程 25 3.3 高溫氧化實驗作業 26 3.3.1 高溫氧化前置及實驗作業 26 3.3.2 高溫氧化實驗分析 26 3.4 氯化鈉高溫腐蝕實驗 27 3.4.1 氯化鈉熱腐蝕前置及實驗作業 27 3.4.2 氯化鈉熱腐蝕實驗分析 27 3.5 分析設備 29 第四章 實驗結果 33 4.1 腐蝕形態外觀 33 4.2 X-RAY繞射分析 37 4.3 截面金相觀察 39 4.4 定性定量分析 46 4.5 反應動力學曲線 62 第五章 討論 68 5.1 氯化鈉熱腐蝕 68 5.1.1 800及850 ℃之氯化鈉熱腐蝕環境 70 5.1.2 750 ℃之氯化鈉熱腐蝕環境 75 5.2 與鐵基合金比較 76 5.2.1 動力學曲線 76 5.2.2 腐蝕形貌 84 第六章 結論 86 參考文獻 87 附錄1 XRD分析 93 附錄2 高溫氧化皮膜分析 95 附錄3 氯化鈉腐蝕後坩堝表面分析 97

    1. Y. N. Chang and F. I. Wei, “High-Temperature Chlorine of Corrosion Metals and Alloys”, J. Materials Science, 26, 3693 (1991).
    2. J. A. Harris, W. G. Lipscomb and D. O. Smith, "Field Experience of Hig Nickel Containing Alloys in Waste Incinerators", Materials Performance in Waste Incineration Systems, NACE, Houston TX (1992).
    3. H. H. Krause, “International Conference on Fireside Problems while Incinerating Municipal and Industrial Waste”, Hemisphere, New York, 20 (1989).
    4. M. K. Hossain and S. R. J. Saunders, “A Microstructural Study of The Influence of NaCl Vapor on The Oxidation of A Ni-Cr-Al Alloy at 850 ℃”, Oxidation of Metals, 12, 1, 1-21 (1978).
    5. C. T. Sims, N. S. Stoloff and W. C. Hagel, “Superalloys II“, Wiley-Interscience, New York, America (1987).
    6. M. F. Ashby,“Modelling the Laser Transformation Hardening of Steel”, Laser Processing of Materials, 34, 8, 225-234 (1984).
    7. W. M. Steen,“Heat Transfer Model for CW Laser Processing”, Journal of Applied Physics, 51, 946-946 (1980).
    8. W. M. Steen.,“Mathematical Modeling of Laser Material Interactions Laser Material Processing, 156-170 (1980).
    9. B.A. Pint, “High Temperature Corrosion of Alumina-forming Iron, Nickel and Cobalt-base Alloys”, Shreir's Corrosion, 1, 606-645 (2009)
    10. A. Galerie, “High Temperature Corrosion of Chromia-forming Iron, Nickel and Cobalt-base Alloys”, Shreir's Corrosion, 1, 583-605 (2009)
    11. J. W. Sons, C. T. Sims and W.C.Hagel, “The Superalloys” , Wiley-Interscience, New York (1972).
    12. E. F. Bradley, “Superalloys A Technical Guide”, ASM International, America (1988).
    13. A. Davin and M. Lamberigts, “Cobalt-based Superalloys for Applications in Gas Turbines”, Materials Science Engineering, 88, 11-19 (1987).
    14. A. Martinez-Villafane, J. G. Chacon-Nava, C. Gaona-Tiburcio, F. Almeraya-Calderon, G. Domínguez-Patino, J. G. Gonzalez-Rodríguez, “Oxidation Performance of a Fe–13Cr alloy with Additions of Rare Earth Elements”, Materials Science and Engineering A, 363, 1-2, 20, 15-19 (2003).
    15. S.K. Samanta, S.K. Mitra and T.K. Pal, "Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel", Materials Science and Engineering: A, 430, 1-2, 242-247 (2006).
    16. N. Birks and G. H. Meier, “Introduction to High Temperature Oxidation of Metals”, Edward Arnold, London, 17 (1983).
    17. C. Wagner, Z. Phys. Chem., 21, 25 (1933).
    18. A. S. Khanna, “Introduction to High Temperature Oxidation and Corrosion”, ASM, New York, 72-78 (2002)
    19. O. Kubaschewski, E. L. Evans and C. B. Alcock, “Metallurgical Thermochemistry”, 4th edition, Pergamon, New York, 421-429 (1967).
    20. Y. N. Chang and F. I. Wei, “High Temperature Chlorine Corrosion of Metals and Alloys”, Journal of Materials Science, 26, 14, 3693 (1991).
    21. V. Nagarajan, J. Stringer and D. P. Whittle, “The Hot Corrosion of Cobalt-base Alloys in A Modified Dean's Rig-I. Co-Cr, Co-Cr-Ta and Co-Cr-Ti Alloys”, Corrosion Science, 22, 5, 407-427 (1982).
    22. B. Chattopadhyay and G. C. Wood, “The Transient Oxidation of Alloys”, Oxidation of Metals, 2, 4, 373 (1970).
    23. Y. Nishi, Y. Shinata and Y. Araki, “Hot Corrosion of Mechanical Alloy MA 754 Induced by Na2SO4-NaCl Mixtures”, Journal of Iron Steel Institute, 69, 9, 1998 (1983).
    24. D. K. Misra and R. Sivakumar, “Effect of NaCl Vapor on the Oxidation of Ni-Cr Alloys”, Oxidation of Metals, 25, 1, 83 (1986).
    25. S. Kim and M. J. Mcnallan, “Mixed Oxidation of Iron-Chrominum Alloys in Gas Containing Oxygen and Chlorine at 900 to 1200 K”, Corrosion(NACE), 46, 9, 746 (1990).
    26. K. N. Strafford, P. K. Datta and G. Forster, “The High Temperature Chloridation of Iron, Nickel and Some Iron-Nickel Model Alloys, Corrosion Science, 29, 6, 703-716 (1989).
    27. F. Wang and Y. Shu, “Influence of Cr Content on the Corrosion of Fe–Cr Alloys: The Synergistic Effect of NaCl and Water Vapor”, Oxidation of Metals, 59, 3/4 (2003).
    28. H.J. Grabke, E. Reese and M. Spiegel, “The Effects of Chlorides, Hydrogen Chloride, and Sulfur Dioxide in the Oxidation of Steels Below Deposits”, Corrosion Science, 37, 7, 1023-1043 (1995).
    29. T. E. Lister, R.E. Mizia, P. J. Pinhero, T. L. Trowbridge and K. Delezene-Briggs, “Studies of the Corrosion Properties in Ni-Cr-Mo-Gd Neutron-Absorbing Alloys” Corrosion, 61, 7, 706-717 (2005).
    30. W. Kai, M. T. Chang, C. D. Liu, D. L. Chiang and J. P. Chu, “The High-Temperature Corrosion of Fe–28Al base Alloys Containing Cr and Y Additions in H2/H2S/H2O Mixed Gases”, Materials Science and Engineering A, 329-331, 734-744 (2002).
    31. H. Asteman, J. E. Svensson and L. G. Johansson, “Effect of Water-Vapor-Induced Cr Vaporization on the Oxidation of Austenitic Stainless Steels at 700 and 900 ℃: Influence of Cr/Fe Ratio in Alloy and Ce Additions”, Journal of the Electrochemical Society, 151, 3, 541-550 (2004).
    32. 李清祺,鐵鎳鉻合金於氯化鈉之高溫腐蝕反應機制,國立台灣科技大學碩士論文,民國87年。
    33. 郭質良,現代化學名詞術語大辭典,廣文書局有限公司,民國64年。
    34. 化學大辭典編輯委員會,英、中、日化學大辭典,總召集人:高阿輝,高立圖書有限公司,民國82年。
    35. 林建勝,鐵鎳鉻系合金於氯化鈉沉積鹽之熱腐蝕,第58頁,國立台灣科技大學碩士論文,民國85年。
    36. A. Katsman, H. J. Grabke, and L. Levin, “Penetration of Oxygen Along Grain Boundaries During Oxidation of Alloy and Intermetallics”, Oxidation of Metals, 46, 313 (1996).
    37. K. Zhang, Y. Niu, M. Al-Omary, and W. T. Wu, “The Corrosion Behavior of Four Commercial Steels in Reducing Atmospheres Containing HCl at 773-873K”, Oxidation of Metals, 62, 5-6, 323-340 (2004).
    38. C. J. Wang and C. C. Li, “Corrosion Behaviors of AISI 1025 steels with Electroless Nickel/ Aluminized Coatings in NaCl-Induced Hot Corrosion”, Surface and Coatings Technology, 177-178, 37-43 (2004).
    39. H. Fujikawa and N. Maruyama, “Corrosion Behavior of Austenitic Stainless-Steels in the High Chloride-Containing Environment”, Materials Science and Engineering A, 120, 1, 301-306 (1989).
    40. U. Seybolt, “Oxidation of Ni- 20Cr Alloy and Stainless Steel in the Presence of Chlorides”,Oxidation of Metals, 2, 2, 119-143 (1970).
    41. U. Shinata, F. Takahashi, K. Hashiura, “NaCl Induced Hot Corrosion of Stainless Steels”, Materials Science and Engineering, 87, 399-405 (1987).
    42. C. Vladimir, “Intergranular Corrosion of Steels and Alloys”, Materials Science, 18, 343-359 (1984).
    43. ASM Metals Handbook Volume 14, 175 (1972).
    44. Y. Shinata and Y. Nishi, “NaCl-Induced Accelerated Oxidation of Chromium”, Oxidation of Metals, 26 , 3-4, 201-212 (1986).
    45. 王朝正、王裕賢與張永忠,”氯化鈉熱腐蝕之回顧”,防蝕工程,第十二卷第一期,第47-63頁,民國87年。
    46. 何天佐,鐵鉻(鎳)不銹鋼於硫氯混合鹽之熱腐蝕,國立台灣科技大學碩士論文,第33頁,民國89年。
    47. C. J. Wang and J. S. Lin, ”The oxidation of MAR M247 superalloy with Na2SO4 coating”, Materials Chemistry and Physics, 76, 2, 123-129 (2002).
    48. D. W. Mckee, D. A. Shores and K. L. Luthra, “Effect of SO2 and NaCl on High-Temperature Hot Corrosion”, Journal of the Electrochemical Society, 125, 3, 411-419 (1978).
    49. B. P. Mohanty and D. A. Shores, “Role of Chlorides in Hot Corrosion of a Cast Fe-Cr-Ni Alloy. Part I: Experimental Studies”, Corrosion Science, 46, 2893-2907 (2004).
    50. J. O. L. Wendt and J. M. Ekmann, “Effect of Fuel Sulfur Species on Nitrogen Oxide Emissions From Premixed Flames”, Combustion and Flame, 25, 355-360 (1975).
    51. K. Zhang, Y. Niu, M. Al-Omary and W. T. Wu, “The Corrosion Behavior of Four Commercial Steels in Reducing Atmospheres Containing HCl at 773-873K”, Oxidation of Metals, 62, 5-6, 323-340 (2004).
    52. 張永忠,鐵錳鋁碳合金氯化鈉沉積熱腐蝕,國立台灣科技大學碩士論文,第9頁,民國87年。
    53. 陳海誠,鐵鉻鎳合金於氯化鹽環境之高溫熱腐蝕機制,國立台灣科技大學碩士論文,第20頁,民國92年。
    54. 日本腐蝕防蝕協會編 黃忠良譯著,金屬材料之高溫氧化與腐蝕,復漢出版社,第63頁,民國77年。

    QR CODE