簡易檢索 / 詳目顯示

研究生: 張玉簫
Yu-Hsiao Chang
論文名稱: 熔射鋁A36/IN82/316L異質銲件於氯化鈉/硫酸鈉熱腐蝕環境之高溫潛變
The High-Temperature Creep Behavior of Thermal-Sprayed Aluminum A36/IN 82/316L Weldments in NaCl/Na2SO4 Hot-Corrosion Environments
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 郭俞麟
Yu-Lin Kuo
開物
Wu Kai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 162
中文關鍵詞: 熔射鋁異質銲接高溫潛變熱腐蝕
外文關鍵詞: thermal spray aluminum, dissimilar weldments, High Temperature Creep, hot corrosion
相關次數: 點閱:376下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以A36-IN82-316L異質銲接件,經熔射鋁處理後,將試片靜置於750 ℃ 分別進行高溫氧化及熱腐蝕試驗,藉此探討高溫氧化及熱腐蝕對熔射鋁層之破壞行為。另外以異質銲接件裸材、熔射鋁異質銲接件及經600 ℃ 熱處理之熔射鋁異質銲接件,於750 ℃ 熱腐蝕環境進行高溫潛變試驗。比較不同條件之異質銲接件,於熱腐蝕環境之斷裂模式。
      實驗結果顯示,試片於高溫氧化環境中,A36因鋁塗層缺陷,無法形成具保護性鋁化層。試片於熱腐蝕環境中,亦因鋁塗層缺陷,無法形成緻密氧化皮膜。而不同條件之異質銲接件,進行高溫潛變試驗結果顯示,裸材、經熱處理之裸材及熔射鋁試片皆斷裂於強度最弱之A36母材。經熱處理之熔射鋁試片,因熱影響區硬度下降,造成A36與IN82界面強度差異變大,最後斷裂於A36與IN82界面。
      異質銲接件經熔射鋁處理後,能延緩腐蝕鹽侵蝕底材速度,使試片潛變壽命增加。熔射鋁試片經熱處理後,雖能改善鋁塗層孔隙率,但另一方面,熱處理造成A36熱影響區硬度下降,使A36與IN82界面強度差異變大而從界面迅速斷裂,導致潛變壽命減少。


      The aim of this research study was to investigate high temperature oxidation and hot corrosion behavior of thermal sprayed aluminum coating on A36-IN82-316L dissimilar weldments at 750 ℃. In addition, comparison on hot corrosion creep rupture for heat-treated and untreated bare and thermal sprayed dissimilar weldment at 750 ℃ also conducted.
      Upon the completion of the study, it was found that aluminum coating on the specimen was unable to form a protective aluminized and oxide layer both at high temperature oxidation and during hot corrosion. Failure of the aluminum coating to form a protective layer was attributed to defect mainly formation of voids on the aluminum coating.
      For creep test, rupture of the bare dissimilar weldment for heat-treated and untreated samples occurred at the A36 base metal. Such phenomenon also observed in thermal sprayed dissimilar weldment could be ascribed to the fact that the weakest point on the weldment is the base metal A36. However, rupture for thermal sprayed weldment occurred at the interface of A36 and IN82 with heat-treatment due to decrease of hardness on HAZ for A36 after heat-treatment.
      We can therefore conclude that aluminum coating can highly improve both corrosion resistance of the dissimilar weldment with increased creep life. Conversely, heat-treatment of the thermal sprayed dissimilar weldment largely amplifies the difference in strength at the interface of A36 and IN82 with decreased creep life due to reduction of hardness at such interface point.

    第一章 前言 1 第二章 文獻回顧 3 2.1 銲接 3 2.1.1 鎢極氣體保護電弧銲(GTAW) 3 2.1.2 銲接件之結構 4 2.2 異質金屬銲接 6 2.2.1碳鋼與沃斯田鐵系不銹鋼之異質銲接 6 2.2.1.1 碳鋼 6 2.2.1.2 沃斯田鐵系不銹鋼 7 2.2.1.3 鎳基超合金 Inconel 82 8 2.2.2 稀釋率 10 2.3熱腐蝕 12 2.3.1 NaCl-Na2So4混合鹽之熱腐蝕 12 2.4 熱熔射鋁 15 2.4.1 目的與原理 15 2.4.2 熔射鋁之特性 17 2.4.3 鋁層之熱處理 18 2.5 鋁塗層之破壞 21 2.5.1 高溫氧化 21 2.5.2 熱腐蝕 23 2.6 潛變 28 2.6.1 潛變曲線 29 2.6.2 潛變破裂 31 2.7 不正常晶粒成長現象 33 第三章 實驗方法 35 3.1 實驗流程 35 3.2 試片準備 36 3.2.1 熔射鋁試片 37 3.2.2 試片微硬度分析 38 3.2.3 熔射鋁試片經熱處理 39 3.3 高溫氧化試驗 40 3.4 熱腐蝕試驗 41 3.5 高溫潛變試驗 43 3.6 實驗後分析設備與方法 45 3.6.1 分析設備 45 3.6.2 分析方法 45 第四章 實驗結果 48 4.1 異質銲件之顯微結構 48 4.1.1 裸材及熔射鋁試片 48 4.1.1.1 鋁塗層形貌 48 4.1.1.2 銲接顯微組織 49 4.1.2 熔射鋁熔射鋁受熱之影響 58 4.1.2.1 鋁塗層形貌 58 4.1.2.2 銲接顯微組織 59 4.2 高溫氧化試驗 60 4.2.1 試片外觀 60 4.2.2 鋁塗層變化 60 4.3 熱腐蝕試驗 70 4.3.1 試片外觀 70 4.3.2 鋁塗層變化 70 4.4 熱腐蝕環境潛變試驗 82 4.4.1 異質銲接件裸材潛變 82 4.4.1.1 試片外觀 82 4.4.1.2 斷裂處形貌 82 4.4.1.3 試片顯微結構 83 4.4.2 熔射鋁異質銲接件 92 4.4.2.1 試片外觀 92 4.4.2.2 斷裂處形貌 92 4.4.2.3 試片顯微結構 93 4.4.3 異質銲接件裸材經熱處理 104 4.4.3.1 試片外觀 104 4.4.3.2 斷裂處形貌 104 4.4.3.3 試片顯微結構 104 4.4.4 熔射鋁異質件試片經熱處理 111 4.4.4.1 試片外觀 111 4.4.4.2 斷裂處形貌 111 4.4.4.3 試片顯微結構 111 第五章 討論 122 5.1 熔射鋁層於高溫氧化環境失效之原因 122 5.2 熔射鋁層於熱腐蝕環境失效之原因 123 5.3 影響異質銲接件熱腐蝕潛變斷裂位置之原因 125 5.3.1 試片破裂於A36母材之原因 125 5.3.2試片破裂於A36與IN82界面之原因 126 5.3.3試片破裂於A36母材及A36/IN82界面之原因 127 5.4 異質銲接件於熱腐蝕環境之潛變 128 5.4.1 裸材、熔射鋁試片及經熱處理之裸材 128 5.4.2 熔射鋁試片經熱處理 133 第六章 結論 136 參考文獻 137

    [1] J. D. Farren, J. N. DuPont, and F. F. Noecker Ii, "Fabrication of a carbon steel-to-stainless steel transition joint using direct laser deposition," A feasibility study, pp. 55-61, 2007.
    [2] K. Laha, K. S. Chandravathi, P. Parameswaran, S. Goyal, and M. D. Mathew, "A Comparison of Creep Rupture Strength of Ferritic/Austenitic Dissimilar Weld Joints of Different Grades of Cr-Mo Ferritic Steels," Metallurgical and Materials Transactions A, journal article vol. 43, no. 4, pp. 1174-1186, 2012.
    [3] 周長彬,"銲接學",全華書局,民國77年。
    [4] S. Kou, "Welding metallurgy," Wiley-Interscience, 2003.
    [5] 王振欽,"銲接學",登文書局,民國74年。
    [6] 姜志華、蔡金峯,"銲接冶金概論",徐氏基金會,民國76年。
    [7] 浜田晉著,趙平譯,"不同金屬之熔接技術",台隆書店,1982。
    [8] J. A. K. Lippold, D, "Welding Metallurgy and Weldability of Stainless Steel," John Wiley amd Sons, Inc, 2005.
    [9] S. L. Jeng, H. T. Lee, T. E. Weirich, and W. P. Rebach, "Microstructual Study of the Dissimilar Joints of Alloy 690 and SUS 304L Stainless Steel," MATERIALS TRANSACTIONS, vol. 48, no. 3, pp. 481-489, 2007.
    [10] M. Sireesha, S. K. Albert, V. Shankar, and S. Sundaresan, "A comparative evaluation of welding consumables for dissimilar welds between 316LN austenitic stainless steel and Alloy 800," Journal of Nuclear Materials, vol. 279, no. 1, pp. 65-76, 2000.
    [11] H. Naffakh, M. Shamanian, and F. Ashrafizadeh, "Microstructural evolutions in dissimilar welds between AISI 310 austenitic stainless steel and Inconel 657," Journal of Materials Science, journal article vol. 45, no. 10, pp. 2564-2573, 2010.
    [12] Z. Li and G. Fontana, "Autogenous laser welding of stainless steel to free-cutting steel for the manufacture of hydraulic valves," Journal of Materials Processing Technology, vol. 74, no. 1, pp. 174-182, 1998.
    [13] K.Saida, "Prevention of microcracking in dissimilar multipass welds of alloy 690 to type 316L stainless steel by Ce addition to filler metal," Science and Technology of Welding and Joining, vol. 16, no. 6, pp. 553-560, 2011.
    [14] J. N., "Dilution in Fusion Welding," ASM International, vol. 6A, 2011.
    [15] 蘇永華,"鐵基合金於氯化鈉/硫酸鈉混合鹽之熱腐蝕",國立台灣科技大學機械所碩士論文,民國88年。
    [16] D. M. Johnson, D. P. Whittle, and J. Stringer, "Mechanisms of Na2SO4-induced accelerated oxidation," Corrosion Science, vol. 15, no. 6, pp. 721-739, 1975.
    [17] 蔡昆哲,"低碳鋼與304不銹鋼異質銲件於氯化鈉/硫酸鈉混合鹽之熱腐蝕",國立台灣科技大學機械所碩士論文,民國103年。
    [18] H. S. E. A. Esfahani, M. A. Golozar, J. Mostaghimi, and Larry Pershin, "Study of Corrosion Behavior of Arc Sprayed Aluminum Coating on Mild Steel," Journal of Thermal Spray Technology, vol. 21, 2012.
    [19] M. H. A. Malek, N. H. Saad, S. K. Abas, N. R. N. Roselina, and N. M. Shah, "Performance and Microstructure Analysis of 99.5% Aluminium Coating by Thermal Arc Spray Technique," Procedia Engineering, vol. 68, pp. 558-565, 2013.
    [20] 黃育智、陳信文、張家華、吳貞欽,"熱熔射製程與熱熔射物件熱處理",化工,第53卷,第3期,pp. 69-77,2006。
    [21] 張家華、張進龍、吳貞欽,"後處理方法對鋁熔射皮膜性能之影響",防蝕工程,第20卷,第1期,pp. 121-126,2006。
    [22] D. A. Chaliampalias, S. Pliatsikas, N. Pavlidou, E. Tsipas, D. Skolianos, S. Chrissafis, K. Stergioudis, G. Patsalas, P. Vourlias, G., "Formation and oxidation resistance of Al/Ni coatings on low carbon steel by flame spray," Surface and Coatings Technology, vol. 255, pp. 62-68, 2014.
    [23] D. Chaliampalias, G. Vourlias, E. Pavlidou, G. Stergioudis, S. Skolianos, and K. Chrissafis, "High temperature oxidation and corrosion in marine environments of thermal spray deposited coatings," Applied Surface Science, vol. 255, no. 5, Part 2, pp. 3104-3111, 2008.
    [24] S. T. Bluni, "High-temperature corrosion behavior of thermal spray coatings," Master of Science, Lehigh University, 1992.
    [25] K. Naumenko and H. Altenbach, "Modeling of Creep for Structural Analysis," Springer Berlin Heidelberg, 2007.
    [26] M. E. Kassner, "Fundamentals of Creep in Metals and Alloys" Elsevier Science, 2015.
    [27] R. Abbaschian and R. E. Reed-Hill, "Physical Metallurgy Principles," Cengage Learning, 2008.
    [28] D. McLean, "The physics of high temperature creep in metals," Reports on Progress in Physics, vol. 29, no. 1, p. 1, 1966.
    [29] 黃秉毅,"低碳鋼熱浸鍍鋁及銲接之高溫疲勞",國立台灣科技大學機械所碩士論文,民國105年。
    [30] R. W. A. R. Marde, "The effect of initial carbide morphology on abnormal grain growth in decarburized low carbon steel," Metallurgical Transactions A, vol. 16, no. 5, pp. 897-906, 1984.
    [31] A. R. Marder, "Factors affecting the final grain size of decarburized lamination steels," Metallurgical and Materials Transactions A, vol. 17, no. 8, pp. 1277-1285, 1986.
    [32] J. Weon Kim, K. Lee, J. Sung Kim, and T. S. Byun," Local mechanical properties of Alloy 82/182 dissimilar weld joint between SA508 Gr.1a and F316 SS at RT and 320 °C," pp. 212-221, 2009.
    [33] J. C. Lippold," Welding Metallurgy and Weldability," Wiley, 2014.
    [34] 葉威廷,"A508與Inconel 52M鎢極氣體保護電弧銲與電漿轉移電弧覆銲後之微觀結構與腐蝕特性",國立台灣科技大學機械所碩士論文,民國105年。
    [35] H. Ming, Z. Zhang, J. Wang, E.-H. Han, and W. Ke, "Microstructural characterization of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint," Materials Characterization, vol. 97, pp. 101-115, 2014.
    [36] I. Bhamji, M. Preuss, P. L. Threadgill, R. J. Moat, A. C. Addison, and M. J. Peel, "Linear friction welding of AISI 316L stainless steel," Materials Science and Engineering: A, vol. 528, no. 2, pp. 680-690, 2010.
    [37] D. E. P. R. Hurrell, A. Gregg and S. Bate, "REVIEW OF RESIDUAL STRESS MITIGATION METHODS FOR APPLICATION INNUCLEAR POWER PLANT," ASME 2006 Pressure Vessels and Piping, vol. 6, pp. 801-812, 2006.
    [38] D. M. a. K. B. e. F. Barbier, "Characterization of Aluminide Coatings Formed on 1.4914 and 316L Steels by Hot-Dipping in Molten Aluminium," Scripta Materialia, vol. 36, pp. 425-431, 1997.
    [39] J. H. Nicholls, "High‐temperature Oxidation and Hot‐dipped Aluminium Coatings," Anti-Corrosion Methods and Materials, vol. 9, no. 9, pp. 238-242, 1962.
    [40] A. Bahadur and O. N. Mohanty, "Structural Studies of Hot Dip Aluminized Coatings on Mild Steel," Materials Transactions, JIM, vol. 32, no. 11, pp. 1053-1061, 1991.
    [41] 鄭維仁,"鉻鉬鋼熱浸鋁矽後鋁化層之顯微結構與高溫相變化行為",國立台灣科技大學機械所碩士論文,民國100年。
    [42] D. R. Clarke, "Stress generation during high-temperature oxidation of metallic alloys," Current Opinion in Solid State and Materials Science, vol. 6, no. 3, pp. 237-244, 2002.
    [43] F. N. Rhines and J. S. Wolf, "The role of oxide microstructure and growth stresses in the high-temperature scaling of nickel," Metallurgical Transactions, vol. 1, no. 6, pp. 1701-1710, 1970.
    [44] 劉孝虹,"430熱浸鍍鋁矽於氯化鈉蒸汽之氧化物鬚晶成長及高溫腐蝕機制",國立台灣科技大學機械所碩士論文,民國94年。
    [45] 涂宗漢,"鋁塗層對低碳鋼、鐵錳鋁碳合金及310不銹鋼於氯化鈉熱腐蝕之耐蝕性改善",國立台灣科技大學機械所碩士論文,民國84年。
    [46] G. R. Heath, P. Heimgartner, G. Irons, R. D. Miller, and S. Gustafsson, "An Assessment of Thermal Spray Coating Technologies for High Temperature Corrosion Protection," Materials Science Forum, vol. 251-254, pp. 809-816, 1997.
    [47] J. T. Busby, M. C. Hash, and G. S. Was, "The relationship between hardness and yield stress in irradiated austenitic and ferritic steels," Journal of Nuclear Materials, vol. 336, no. 2, pp. 267-278, 2005.
    [48] E. J. Pavlina and C. Vantyne," Correlation of Yield Strength and Tensile Strength with Hardness for Steels," pp. 888-893, 2008.
    [49] 李名言,"鎳基合金材質特性介紹",中工高雄會刊,第21卷,第1期,民國102年。
    [50] K. Laha, K. S. Chandravathi, K. B. S. Rao, S. L. Mannan, and D. H. Sastry, "An assessment of creep deformation and fracture behavior of 2.25Cr-1Mo similar and dissimilar weld joints," Metallurgical and Materials Transactions A, vol. 32, no. 1, pp. 115-124, 2001.
    [51] G. Wang, H. Wang, F. Xuan, S. Tu, and C. Liu, "Local fracture properties and dissimilar weld integrity in nuclear power plants," Frontiers of Mechanical Engineering, vol. 8, no. 3, pp. 283-290, 2013.
    [52] R. W. K. B. Honeycombe, H.K.D.H.著,蔡明欽譯,"鋼-顯微組織與性質",五南,2004。
    [53] K. E. Puttick, "Ductile fracture in metals," The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, vol. 4, no. 44, pp. 964-969, 1959.

    QR CODE