簡易檢索 / 詳目顯示

研究生: 藍威勝
Wei-Sheng Lan
論文名稱: Ti-6Al-4V熱浸鋁及其高溫腐蝕特性
The Hot-dip Aluminizing of Ti-6Al-4V and its High-temperature Corrosion Characteristics
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 王朝正
Chaur-Jeng Wang
李志偉
Jyh-Wei Lee
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 107
中文關鍵詞: 熱浸鍍鋁鈦合金高溫氧化Na2SO4-V2O5熱腐蝕
外文關鍵詞: Hot dip Aluminum, Ti-6Al-4V, High temperature Oxidation, Na2SO4-V2O5 Hot corrosion
相關次數: 點閱:180下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以Ti-6Al-4V(Ti64)為底材,於720 °C ~ 820 °C進行120秒到600秒的熱浸純鋁。結果顯示,Ti64於鋁湯中和鋁形成TiAl3,TiAl3層之厚度不隨熱浸溫度與時間而有顯著變化。鋁化形態為1 µm的TiAl3層,外側為含細微TiAl3顆粒之純鋁層。由於鈦與液態鋁形成TiAl3後體積大幅縮小,因此TiAl3層中的TiAl3顆粒(晶粒)均為Al所包覆。當熱浸後之Ti64再升溫到高於鋁熔點以上,晶粒間Al(l)快速沿晶與Ti64底材反應,且因體積收縮使鋁化層呈現多孔之形貌。此多孔鋁化層之形貌於單純高溫氧化環境,因TiAl3有很好的抗氧化性,雖然是孔洞形貌,但仍僅有少量的氧化增重。但在Na2SO4-V2O5熱腐蝕,熔融腐蝕鹽沿孔洞滲入,快速破壞鋁化層侵蝕合金底材。若Ti64熱浸鋁後先於鋁熔點溫度以下持溫擴散,較緩慢的固體擴散以及較小的體積收縮,可以獲得緻密的TiAl3層,大幅提升Ti64的抗熱腐蝕性。


    In this study, Ti-6Al-4V (Ti64) was used as the substrate, and hot-dipped aluminizing was conducted at 720 °C~820 °C for 120 seconds to 600 seconds. The results show that Ti64 react with molten aluminum and form TiAl3, However the thickness of the TiAl3 layer does not change significantly with hot-dip temperature and time. The aluminized morphology of the TiAl3 is 1 µm layer, and the outer side is a pure aluminum layer containing fine TiAl3 particles. Since Ti react with Al(l) and form TiAl3, the volume is greatly reduced, so the TiAl3 particles (grains) in the TiAl3 layer are all surrounded with Al. When hot-dipped Ti64 be heated up to higher than the melting point of aluminum, the intergranular Al(l) reacts with Ti64 substrate rapidly along the grains, and the aluminized layer appears porous due to volume shrinkage. The morphology of this porous aluminized layer is in a simple high-temperature oxidation environment. Because TiAl3 has good oxidation resistance, although it is a pore morphology, there is still only a small amount of oxidized weight gain. However, in Na2SO4-V2O5 hot corrosion, molten corrosion salt penetrates along the voids, quickly destroying the aluminized layer and eroding the alloy substrate. If Ti64 is hot-dip aluminum and then diffuses at a temperature below the melting point of aluminum, slower solid diffusion and smaller volume shrinkage can produce a more compact TiAl3 layer, which greatly improves the hot corrosion resistance of Ti64.

    第一章 前言 第二章 文獻回顧 2.1 合金Ti-6Al-4V (Ti64) 2.2 高溫氧化 2.2.1 高溫氧化熱力學 2.2.2高溫氧化動力學 2.2.3 Ti-6Al-4V高溫氧化 2.3 熱腐蝕 2.3.1 熔融鹽腐蝕 2.3.2 V2O5-Na2SO4混合鹽熱腐蝕 .4 熱浸鍍鋁 2.4.1 熱浸鍍鋁介紹 2.4.2 Ti-6Al-4V熱浸鍍鋁 2.4.3 熱浸鋁Ti-6Al-4V高溫氧化 第三章 實驗方法 3.1實驗流程 3.2 試片製備 3.3 熱浸鍍鋁製程 3.3.1 熱浸鍍鋁前處理 3.3.2 熱浸鍍鋁 3.4 熔融鋁湯擴散實驗 3.5 腐蝕鹽揮發實驗 3.6 高溫氧化或內擴散 3.7 熱腐蝕試驗 3.8 分析設備與方法 第四章 結果與討論 4.1 Ti-6Al-4V熱浸純鋁 4.1.1 熱浸動力學 4.1.2 熱浸鍍層微觀分析 4.1.3 熱浸機制 4.1.4 鍍層擴散 4.2 高溫腐蝕 4.2.1 揮發試驗 4.2.2腐蝕動力學與腐蝕型態 4.2.3腐蝕機制 4.2.4 穩定擴散後之熱腐蝕 第五章 結論 參考文獻 附錄1 腐蝕鹽塗佈驗證計算 附錄2 莫耳體積收縮率計算 附錄3 揮發物重量計算

    [1] C. Leyens, and M. Peters, "Titanium and Titanium Alloys-Fundamentals and Applications," WILEY-VCH, p. 78, 2003.
    [2] I. Gurrappa, "Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications," Materials Characterization 51 (2003) 131-139.
    [3] T. Mitsuhiro and K. Masashi, "Making Lighter Aircraft Engines with Titanium Aluminide Blades," IHI Engineering Review 47 (2014) 1.
    [4] N. Eliaz, G. Shemesh, and E. M. Latanision, "Hot corrosion in gas turbine components," Engineering Failure Analysis 9 (2002) 31-43.
    [5] G. Y. Lai, "High Temperature Corrosion and Material Applications," ASM International, p. 322, 2007.
    [6] 陳海誠,鐵鉻鎳合金於氯化鹽環境之高溫腐蝕機制,國立臺灣科技大學機械所碩士論文,民國91年。
    [7] D. K. Das and S. P. Trivedi, "Microstructure of diffusion aluminide coatings on Ti-base alloy IMI-834 and their cyclic oxidation behavior at 650 °C," Materials Science and Engineering A 367 (2004) 225–233.
    [8] Z. W. Li, W. Gao, D. Y. Ying, and D. L. Zhang, "Improved oxidation resistance of Ti with a thermal sprayed Ti3Al(O)–Al2O3 composite coating," Scripta Materialia 48 (2003) 1649–1653.
    [9] W. Y. Tan, W. Sun, A. Bhowmik, J. Y. Lek, I. Marinescu, F. Li, N. W. Khun, Z. Dong, and E. Liu, "Effect of coating thickness on microstructure, mechanical properties and fracture behavior of cold-sprayed Ti6Al4V coatings on Ti6Al4V substrates," Surface And Coatings Technology 349 (2018) 303-317.
    [10] S. Liu, and Q. Huang, "Coating structure and properties of continuously hot dipped aluminized steel wire," Materials Science and Technology 19:8 (2003) 1025-1028.
    [11] B. Sefer, "Oxidation and Alpha–Case Phenomena in Titanium Alloys used in Aerospace Industry: Ti–6Al–2Sn–4Zr–2Mo and Ti–6Al–4V," Lulea University of Technology-Department of Engineering Sciences and Mathematics-Material Science, 2014.
    [12] C. Ciszak, P. Ioana, J. M. Brossard, D. Monceau, and S. Chevalier, "NaCl induced corrosion of Ti-6Al-4V alloy at high temperature," Corrosion Science 110 (2016) 91-104.
    [13] J. Dai, J. Zhu, C. Chen, and F. Weng, "High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review," Journal of Alloys and Compounds 685 (2016) 784-798.
    [14] I. Gurrappa, "An oxidation model for predicting the life of titanium alloy components in gas turbine engines," Journal of Alloys and Compounds 389 (2005) 190–197.
    [15] P. Patel, N. I. Jamnapara, A. Zala, and S. D. Kahar, "Investigation of hot-dip aluminized Ti6Al4V alloy processed by different thermal treatments in an oxidizing atmosphere," Surface and Coating Technology 385 (2020) 125323.
    [16] Z. G. Zhang, Y. P. Peng, Y. L. Mao, C. J. Pang, and L. Y. Lu, "Effect of hot-dip aluminizing on the oxidation resistance of Ti–6Al–4V alloy at high temperatures," Corrosion Science 55 (2012) 187-193.
    [17] S. Kumar, K. Chattopadhyay, G. S. Mahobia, and V. Sing, "Hot corrosion behavior of Ti–6Al–4 V modified by ultrasonic shot peening," Materials and Design 110 (2016) 196-206.
    [18] Y. G. Zhao, W. Zhou, Q. D. Qin, Y. H. Liang, and Q. C. Jiang, "Effect of pre-oxidation on the properties of aluminide coating layers formed on Ti alloys," Journal of Alloys and Compounds 391 (2005) 136–140.
    [19] M. Hasegawa, "Ellingham Diagram," ScienceDirect 1 (2014) 507-516.
    [20] H. Guleryuz, and H. Cimenoglu, "Oxidation of Ti–6Al–4V alloy," Journal of Alloys and Compounds 472 (2009) 241–246.
    [21] H. Okamoto, "O–Ti (Oxygen–Titanium)," Journal of Phase Equilibria and Diffusion 32 (2011) 473–474.
    [22] P. Kofstad, "High Temperature Oxidation of titanium," Journal of the Less Metals 12 (1966) 449-464.
    [23] H. L. Du, P. K. Datta, D. B. Lewis, and J. S. B. Gray, "Air oxidation behaviour of Ti–6Al–4V alloy between 650 and 850 °C," Corrosion Science 63 (1994) 631–642.
    [24] E. Fitzer and J. Schwab, "attack of scaling-resistant materials by V2O5 and effect of various alloying element thereon," Corrosion Science 12 (1956) 49-54.
    [25] J. G. G.-Rodriguez, S. Haro, A. M.-Villafane, V. M. S.-Bravo, and J. P.-Calderon," Materials Science and Engineering A 435–436 (2006) 258–265.
    [26] G. W. Cunningham and A. D. S. Brasunas," The Effect of Contamination by Vanadium and Sodium Compounds On the Air-Corrosion of Stainless Steel," Corrosion Science 12 (1956) 35-51.
    [27] M. H. Habibi, L. Wang, and S. M. Guo," Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7+YSZ composite thermal barrier coatings in Na2SO4+V2O5 at 1050 °C," Journal of European Ceramic Society 32(8) (2012) 1635-1642.
    [28] C. J. Wang, Y. C. Chang, and Y. H. Su, "The Hot Corrosion of Fe–Mn–Al–C Alloy with NaCl/Na2SO4 Coating Mixtures at 750 °C," Oxidation of Metal 59 (2002) 1/2.
    [29] C. J. Wang, and T. T. He, "Morphological Development of Subscale Formation in Fe–Cr–(Ni) Alloys with Chloride and Sulfates Coating," Oxidation of Metal 58 (2002) 3/4.
    [30] 盧家彥,9Cr-1Mo鋼熱浸鍍鋁後於氯化鈉/硫酸鈉熱腐蝕環境之高溫潛變,國立臺灣科技大學機械所碩士論文,民國108年。
    [31] K. L. Luthra and H. S. Spacil, "Impurity Deposits in Gas Turbines from Fuels Containing Sodium and Vanadium," journal of The Electrochemical Society 129 (1982) 3.
    [32] N. S. Bornstein, M. A. Decrescente, and H. A. Roth, "Interaction between vanadium in gas turbine fuels and sulfidation attack," Corrosion Science 28(7) (1972) 264-268.
    [33] W. J. Cheng and C. J. Wang, "Growth of intermetallic layer in the aluminide mild steel during hot-dipping," Surface and Coatings Technology 204 (2009) 824–828.
    [34] W. Deqing, "Phase evolution of an aluminized steel by oxidation treatment," Applied Surface Science 254 (2008) 3026–3032.
    [35] S. L. Horng, C. J. Wang, and K. J. Lin, "The Application of Hot Dipping Commercial Pure Aluminum onto Low Carbon Steel," Journal of Chinese Corrosion Engineering 11(1) (1997) 1-7.
    [36] J. B. Nasr, A. Snoussi, C. Bradai, and F. Halouani, "Effect of the withdrawal speed on the thickness of the zinc layer in hot dip pure zinc coatings," Materials Letters 62 (2008) 2150–2152.
    [37] M. Sujata, S. Bhargava, and S. Sangal, "On the formation of TiAI3 during reaction between solid Ti and liquid Al," Journal of Materials Science Letters 16 (1997) 1175-1178.
    [38] U. R. Kattner, J. C. Lin, and Y. A. Chang," Thermodynamic Assessment and Calculation of the Ti-Al System," Metallurgical Transactions A 23 (1992) 2081-2090.
    [39] Z. G. Zhang, X. Teng, H. F. Xiang, Y. G. Sheng, and X. J. Zhang, "Preparation of TiAl3 Coating on γ-TiAl through Hot-dip Aluminizing and Subsequent Interdiffusion Treatment," High Temperature Materials and Processes 28 (2011) 1-2.
    [40] P. Patel, N. I. Jamnapara, A. Zala, and S. D. Kahar, "Investigation of hot-dip aluminized Ti6Al4V alloy processed by different thermal treatments in an oxidizing atmosphere," Surface and Coatings Technology 385 (2020) 125323.
    [41] W. Deqing, S. Ziyuan, and T. Yingli, "Microstructure and oxidation of hot-dip aluminized titanium at high temperature," Applied Surface Science 250 (2005) 238–246.
    [42] C. J. Wang, P. K. Koech, and X. Z. Lin, "High-temperature degradation mechanism of aluminide coatings on titanium alloys under cyclic oxidation at 750°C," Journal of the Chinese Institute of Engineers 42 (2019) 3.
    [43] S. C. Jeng, "Oxidation behavior and microstructural evolution of hot-dipped aluminum coating on Ti-6Al-4V alloy at 800 °C," Surface and Coatings Technology 235 (2013) 867-874.
    [44] A. Rahmel and P. J. Spencert, "Thermodynamic Aspects of TiAl and TiSi2 Oxidation: The Al-Ti-O and Si-Ti-O Phase Diagrams," Oxidation of Metals 35 (1991) 1/2.
    [45] C. Parlikar, M. Z. Alam, R. Sarkar, and D. K. Das, "Effect of oxidation resistant Al3Ti coating on tensile properties of a near α-Ti alloy," Surface and Coatings Technology 236 (2013) 107-117.
    [46] M. Z. Alam and D. K. Das, "Effect of cracking in diffusion aluminide coatings on their cyclic oxidation performance on Ti-based IMI-834 alloy," Corrosion Science 51 (2009) 1405–1412.
    [47] 張玉蕭,熔射鋁A36/IN82/316L異質銲件於氯化鈉/硫酸鈉熱腐蝕環境之高溫潛變,國立臺灣科技大學機械所碩士論文,民國107年。
    [48] 賴立霖,熱浸鍍鋁A36低碳鋼銲接件於氯化鈉/硫酸鈉熱腐蝕環境之高溫潛變,國立臺灣科技大學機械所碩士論文,民國107年。
    [49] Viscosity-The Velocity Gradient,Infoplease,參考來源:"https://www.infoplease.com/encyclopedia/science/physics/concepts/viscosity/the-velocity-gradient,2020年7月。
    [50] M. Mirjalili, M. Soltanieh, K. Matsuura, and M. Ohno, "On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple," Intermetallics 32 (2013) 297-302.
    [51] L. Xu, Y. Y. Cui, L. Hao, and R. Yang, "Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples," Materials Science and Engineering A 435–436 (2006) 638–647.
    [52] P. Y. Wang, H. J. Li, L. H. Qi, X. H. Zeng, and H. S. Zuo, "Synthesis of Al-TiAl3 compound by reactive deposition of molten Al droplets and Ti powders," Materials International 21 (2011) 153-158.
    [53] M. Safiri, M. Meratian, and M. Panjepour, "Fabrication of Al-TiAl3 Composite Via In-Situ Accumulative Roll Bonding (ARB) and Annealing," Metallurgical and Materials Transaction A 50A (2019) 415.
    [54] 材料性質,MatWeb,參考來源:http://www.matweb.com,2020年7月。
    [55] 元素基本性質,Aqua-Calc,參考來源:http://www.aqua-calc.com,2020年7月。
    [56] 元素基本性質,American Elements 參考來源:https://www.americanelements.com,2020年7月。

    QR CODE