簡易檢索 / 詳目顯示

研究生: 鄭博謙
Po-Chien Cheng
論文名稱: 膽管支架擴張製程與可取回設計
Expansion Process and Retrievable Design of Biliary Stent
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 鍾俊輝
Chun- Hui Chung
周敏傑
Min-Chieh Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 122
中文關鍵詞: 雷射加工膽管支架自我擴張式支架鎳鈦合金支架運輸系統
外文關鍵詞: laser cutting, biliary stent, self-expanding stent, nitinol, stent delivery system
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膽管支架(Biliary Stent)為一種中空管狀結構的醫療器材,在近幾年被廣泛應用在因惡性腫瘤或其他原因所造成的阻塞性黃疸。膽管支架放置術是一種侵入性較小的治療方法,可以經由微創支架植入手術撐開已阻塞的膽管,使膽汁流通,並提高癌症病患的存活時間及生活品質。
    本研究使用光纖雷射進行加工,以鎳鈦合金管材為基材,利用焦距、功率、脈衝重複頻率等參數進行測試,並找出適合加工之條件進行膽管支架切割加工。並由小管徑的鎳鈦圓管進行切割製作,再擴張至目標直徑。本研究以不同的熱處理時間以及擴張量進行回縮量探討,透過分段擴張的方式成功將不同設計的支架擴張至目標尺寸。此外,本研究將市售的支架輸送系統改良,並將自製的膽管支架壓縮至9F導管中,探討不同設計支架在回收時結構順應性之變化,得知透過改變支架之間距及覆膜可有效改善其順應性。


    Biliary stent is a medical device which is a plastic or metal tube that is developed from cardiovascular stents. Recently the different types of biliary stent are widely used to provide a longer patency. The surgery puts thin catheter stent in the bile duct obstruction site, then the stent expands by itself and allow the bile flow through the blockage of the bile ducts, so the patient's symptoms can be alleviated.
    In this study, fiber laser was determined to cut nitinol (Ni-Ti) alloy. Optimal parameters were found by investigating focal position, average power, and pulse repetition rate for fabricating biliary stent. This study succeeded to expand different kinds of stent to target diameter and investigated the stent retraction by different heat treatment time and expanded diameter. In addition, a commercial 9F delivery system was modified and the fabricated biliary stents were crimped into the catheter to investigate the flexibility of different type of stent during retrieving into the catheter. Base on the result, adjusting space between strut layers and covering stent with membrane could improve stents’ flexibility effectively.

    摘要 I Abstract II 誌謝 1 目錄 2 圖目錄 6 表目錄 12 第一章、緒論 14 1.1前言 14 1.2研究動機與目的 15 第二章、文獻回顧 16 2.1鎳鈦合金材料介紹 16 2.1.1鎳鈦合金熱處理文獻回顧 20 2.2雷射原理與特性 24 2.2.1雷射加工文獻回顧 29 第三章,研究方法 36 3.1膽管支架擴張模擬 38 3.1.1建立有限元素模型 38 3.1.2定義材料性能 38 3.1.3網格大小收斂性分析 40 3.1.4條件設置 41 3.2光纖雷射加工 44 3.2.1前置工作-支架繪製 44 3.2.2光纖雷射系統 48 3.2.3光纖雷射實驗規劃 50 3.2.4膽管支架材料選用 56 3.3膽管支架之擴張製程 58 3.3.1擴張設備 59 3.3.2膽管支架擴張 61 3.3.3鎳鈦合金相轉換溫度試驗 64 3.4可回收支架傳輸器 67 3.4.1使用設備 67 3.4.2支架運輸器之改良 70 3.4.3支架取回試驗 72 3.5量測儀器 74 3.5.1掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 74 3.5.2光學顯微鏡 75 3.5.3超音波洗淨機 76 3.5.4示差掃描熱量分析儀(differential scanning calorimeter, DSC) 77 第四章、實驗結果與討論 78 4.1膽管支架擴張模擬 78 4.2光纖雷射實驗 81 4.2.1光纖雷射聚焦位置測試實驗 81 4.2.2雷射加工參數對於材料切穿與切口寬度之關係 84 4.2.3膽管支架加工 87 4.3膽管支架之擴張製程 91 4.3.1熱處理時間對於支架熱應力之影響 91 4.3.2熱處理時間對於支架回縮量之影響 93 4.3.3不同熱處理溫度與時間對於相轉換溫度之影響 100 4.3.4膽管支架擴張 102 4.4可取回支架傳輸器試驗結果 105 第五章、結論與未來展望 111 5.1結論 111 5.2未來展望 114 參考文獻 115

    [1] “Medical Devices Challenges and Opportunities for Enhancing the Health and Wealth of Canadians”, Medical Devices Innovation Institute(MDI2), 2011.
    [2] Shabalovskaya, S., "On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys"Bio-Medical Materials and Engineering,Vol.6,pp.267-289,1996.
    [3] Mauro, D., Cardone, D., "Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension."International Journal of Mechanical Sciences,Vol.43,pp.2657-2677,2001.
    [4] Kazuhiro, O., Kakeshita, T. "Science and technology of shape-memory alloys: new developments." Mrs Bulletin,Vol.27,pp.91-100,2002.
    [5] Miyazaki, S., Otsuka, K. and Suzuki, Y., "Transformation pseudoelasticity and deformation behavior in a Ti-50.6 at% Ni alloy."Scripta Metallurgica" Scripta Metallurgica,Vol.15,pp.287-292,1981.
    [6] Deruig, C. T., Melton, K. N., Wayman, C. M., Stockel, D., "Engineer Aspects of Shape-Memory Alloys", Butterworth-Heinemann, London, 1990.
    [7] Wever, D. J., Veldhuizen, A. G., Vries, J., and Busscher, H. J., "Electrochemical and Surface Characterization of a Nickel-Titanium Alloy", Biomaterials,Vol.19,pp.761-769,1998.
    [8] Yeung, K.W., Cheung, K.M., Lu, W.W., Chung, C. Y., "Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant",Materials Science and Engineering,Vol.383,pp.213-218, 2004.
    [9] Liu, X., Wang, Y., Yang, D., Qi, M., "The effect of ageing treatment on shape-setting and superelasticity of a nitinol stent"Meterial Characterization,Vol.59,pp.402-406,2008.
    [10] Pelton, A R., Dicello, J., and Miyazaki, S., "Optimisation of processing and properties of medical grade Nitinol wire."Minimally Invasive Therapy & Allied Technologies,Vol.9,pp.107-118,2000.
    [11] Vojtech, D., "Influence of heat treatment of shape memory NiTi alloy on its mechanical properties ",Czech Academy of Science,2010.
    [12] http://www.nitinol.com/nitinol-university/nitinol-facts
    [13] 蔡宗河,CO2雷射加工,全華科技圖書股份有限公司,1995.
    [14] 林三寶,雷射原理與應用,全華圖書股份有限公司,2009.
    [15] Mannion, P., Magee, J., “Ablation thresholds in ultrafast laser micro-machining of common metals in air”, Proceedings of SPIE,Vol.4876,pp.470-478, 2003.
    [16] 丁勝懋,雷設工程導論,中央圖書出版社,1995.
    [17] 許育豪,「飛秒雷射至做金屬玻璃微奈米轉印精密模具應用分析」,國立台灣科技大學,2011.
    [18] Kathuria, Y. P. "Laser microprocessing of stent for medical therapy."Micromechatronics and Human Science, 1998. MHS'98. Proceedings of the 1998 International Symposium on. IEEE,pp.111-114,1998.
    [19] Momma, C., Knop, U., and Nolte, S., "Laser cutting of slotted tube coronary stents, State of the art and future developments."Progress in Biomedical Research,Vol.4,pp.39-44,1999.
    [20] Meng, H. Y., et al. "Fiber laser cutting technology on coronary artery stent."Chinese Journal of Lasers,Vol.34,2007.
    [21] Kleine, K., Whitney, B. and Watkins, K., "Use of fiber lasers for micro cutting applications in the medical device industry," in 21st International Congress on Applications of Lasers and Electro-Optics, Scottsdale, 2002.
    [22] Baumeisterl, M., Aumeisterl, K., Dicsmannl, T., "Fiber laser micro-cutting of stainless steel sheets",Applied Physics A Materials Science & Processing,Vol.85,pp.121-124,2006.
    [23] Muhammad, N., et al. "Picosecond laser micromachining of nitinol and platinum–iridium alloy for coronary stent applications." Applied Physics,Vol.106,pp.607-617,2012.
    [24] Muhammada, N., Whiteheada, D., Boorb, A., Lia, L., "Comparison of dry and wet fibre laser profile cutting of thin 316L stainless steel tubes for medical device applications" in Journal of Materials Processing Technology,Vol.210,pp.2261-2267,2010.
    [25] Wei, W., Min, Q., Xiao-Peng, L., " Delivery and Release of Nitinol Stent in Carotid artery and their Interactions: A Finite Element Analysis", Journal of Biomechanics,Vol.40,pp.3034-3040,2007.
    [26] Kugler, T., Naeem, M., “Material processing with super modulation”, ICALEO 2002 proceedings,Phoenix,2002.
    [27] Ostendorf, A., Korte, F., Kamlage, G., Klug, U., Koch, J., Serbin, N. Baersch, T., Bauer, B.N., “3D Laser Microfabrication: Principles and Applications”,John Wiley & Sons,pp.355-357, 2006.
    [28] 張國順,鄭壽昌,“現代雷射製造技術”,456-459頁 ,2008.
    [29] 陳正宗,「膽管支架之設計與光纖雷射加工」,國立台灣科技大學,2013.
    [30] Nematzadeh, F., and Sadrnezhaad S. K,. "Effects of design parameters and Af temperature on superelastic behaviour of Nitinol stent for application in biliary duct: finite element analysis."Materials Technology,Vol.29,pp.65-75,2014.
    [31] Tönshoff, H. K., et al. "Microdrilling of metals with ultrashort laser pulses."Journal of Laser Applications,Vol.12,pp.23-27,2000
    [32] Henderson, E. Nash, D. H., and Dempster. W. M.. "On the experimental testing of fine Nitinol wires for medical devices."Journal of the mechanical behavior of biomedical materials,Vol.4,pp.261-268,2011.

    無法下載圖示 全文公開日期 2020/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE