簡易檢索 / 詳目顯示

研究生: 陳世明
Shih-Ming Chen
論文名稱: 矽對鐵基與鎳基合金熱浸鋁化塗層之顯微結構和高溫氧化性的影響
Effect of Si on the Microstructure and High-Temperature Oxidation Performance of Hot-Dip Aluminized Coatings Formed on Fe- and Ni-Base Alloys
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 鄭偉鈞none
none
李志偉
none
王星豪
none
邱六合
none
開物
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 177
中文關鍵詞: 低碳鋼拋物線律IN-718熱浸鍍高溫氧化循環氧化氧化鋁Fe2Al5NiAl相互擴散行為孔洞
外文關鍵詞: Low carbon steel、IN-718、Hot-dipping、Isotherma
相關次數: 點閱:314下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於本研究針對低碳鋼和鎳基超合金IN-718,先藉由各別沈浸於700℃之純鋁、鋁-7wt%矽和鋁-10wt%矽所組成的熔湯中16秒,用以施加熱浸塗層。關於低碳鋼經由熱浸鍍試驗後,其實驗結果顯示將矽元素添加至熔融鋁湯中,會使得低碳鋼熱浸試片生成之合金化層厚度值減薄,並且其合金化層與基材間之界面形態也會轉換成為平坦狀。低碳鋼藉由熱浸純鋁塗層之施加,其合金化層厚度值為52 μm;相對地,當其分別藉由熱浸鋁-7wt.矽和鋁-10wt.矽塗層之施加時,其合金化層厚度值則皆會被縮減至10 μm。三種低碳鋼熱浸試片之鋁塗層經組成相分析後,從表面至基材側皆依序為由Al、FeAl3和Fe2Al5所組成。另一方面,IN-718合金經由不同組成之熱浸鍍試驗後,其熱浸試片皆會生成厚度值為47 μm之塗層,並且該塗層為具有鋁湯成分之外層和為由介金屬化合物所存在的內層所組成的雙層結構。
    對於低碳鋼熱浸試片,其塗層中之鋁元素會受到氧化反應和鋁化塗層與基材間之相互擴散反應的進行而逐漸地被消耗掉,因此使得原先存在於其鋁化塗層中之富含鋁元素的Fe2Al5,會依序轉換成為FeAl2和FeAl,最終將會轉換成為α-Fe(Al)。依據氧化增重量之實驗結果,顯示於氧化溫度高於550℃時,低碳鋼熱浸試片之氧化增重量會隨著其塗層所含有之矽元素含量的增加而增加。此現象可歸因於添加矽元素至塗層中,會增進孔洞的生成與聚集現象,促使裂縫會形成於鋁化塗層與基材之界面處,最後使得鋁化塗層底下之基材區域亦會產生氧化現象。依據循環氧化試驗之結果,顯示受到循環應力之作用會造成鋁化塗層之破裂與剝落現象,因此在循環氧化試驗下會加速三種之低碳鋼熱浸試片產生衰敗現象之速率。
    關於IN-718合金熱浸試片,其鋁化塗層之主要相為由NiAl和富含鉻元素之析出物所組成。並且在其中間擴散區除了由σ相所組成外,對於含有矽元素之鋁-矽塗層,其亦會生成Cr37Nb27Si36之析出物分佈於中間擴散區。依據實驗結果,顯示存在於塗層中之矽元素所生成的Cr37Nb27Si36析出物會具有擴散阻礙之作用,因此能夠抑制NiAl相中之鋁元素的衰減速率。因此對於IN-718合金而言,藉由選用鋁-矽塗層之施加會具有較其選用純鋁塗層為佳之使用壽命。但是隨著氧化時間之增加,相互擴散反應仍舊會造成其鋁化塗層之組成相,逐漸地由NiAl轉換成為內部固溶鋁之γ-基材相。


    Low carbon steel and Ni-based superalloy IN-718 were also coated by hot-dipping into molten baths containing pure Al, Al-7wt%Si and Al-10wt%Si at 700℃ for 16 s, respectively. After the hot-dip treatment of low carbon steel, it was shown that the addition of Si in the molten Al bath resulted in the formation of a thinner intermetallic layer and the smoother interface between the intermetallic layer and the substrate. The thickness of intermetallic layer was decreased from 52 μm in the case of pure Al to 10 μm in both Al-Si cases. All the coating layers consisted of three phases, where Al formed the major constituent of the outer phase, FeAl3 was the major constituent of the middle phase and Fe2Al5 was the major constituent of the inner phase, next to the Fe. On the other hand, all the coatings consisted of two uniform layers with a total thickness of about 47 μm after hot dip treatment of IN-718 alloy, the outer layer conforming to the bath composition and the inner layer indicating an intermetallic zone.
    After the oxidation testing, the Fe2Al5 formed during the immersion process was completely transformed to FeAl2, FeAl and α-Fe(Al) phases because of the composition gradient and the chemical diffusion by oxidation for all low carbon steel coated specimens. As Si content in the coating layer on low carbon steel was increased, the weight gain for the aluminized coating was also increased at temperatures above 550℃. It was due to the fact that voids condensed to form cracks extensively at the interface between the aluminide layer and the steel substrate and provide more substrate surface area for oxidation. Degradation of all low carbon steel coated specimens was generally more rapid under thermal cycling conditions because of cracking and spalling of the aluminide layer.
    The primary phase of the aluminide layer is NiAl with Cr-rich precipitation particles for all IN-718 coated specimens. The interdiffusion zone is composed of σ phase with/without white particles of Cr37Nb27Si36 for pure Al and Al-Si coating, respectively. Experimental results evidenced that the Si content in the coating layer is responsible for formation of Cr37Nb27Si36, which acts as a barrier to retard the degeneration rate of Al in the NiAl phase. Thus, the Al-Si aluminized coating is obviously preferable to a pure Al aluminized coating for prolonging the lifetime of the protective aluminized coating on In-718 alloy. With time increasing, the aluminide layer was also gradually transformed to Al alloyed -substrate phase due to the interdiffusion reaction at high temperature. A dense Al2O3 surface layer was partially spalled on all IN-718 alloy coated specimens after cyclic oxidation test at 1100℃ for 240 cycles, in which advanced the degradation behavior of all coated specimens.

    第一章 前言 1 第二章 文獻回顧 4  2.1 合金之高溫氧化性質與表面處理方法 4 2.1.1 氧化鋁皮膜 4 2.1.2 表面處理方法 5 2.1.3 商用熱浸鍍製程之處理步驟 6 2.1.4 最佳化塗層之準則 7 2.2 熱浸鍍表面處理方法 9 2.2.1 熱浸鍍參數之影響性 9 2.2.2 矽元素之作用 10 2.2.3 碳鋼熱浸純鋁與鋁-矽塗層之特徵形態 13  2.3 介金屬化合物之生成與分佈 14 2.3.1 介金屬相之性質 14 2.3.2 鋁化塗層之成長與介金屬相之分佈 19 2.3.3 合金化層之厚度值 24 2.3.4 中間擴散阻礙層 25  2.4 鋁化塗層之失效機制 27 2.4.1 鋁元素之消耗 27 2.4.2 Kirkendall效應 27 2.4.3 孔洞的生成與分佈 28 2.4.4 熱循環效應之影響 30 2.4.5 裂縫與氧化瘤之生成 31 第三章 實驗方法 33  3.1 熱浸鍍實驗 34 3.1.1試片製作及加工 34 3.1.2 熱浸鍍製程 34 3.2 高溫恆溫氧化實驗 36  3.3 高溫循環氧化實驗 37  3.4 分析設備與方法 38 3.4.1 分析設備 38 第四章 實驗結果 39  4.1 熱浸鍍實驗 39 4.1.1 熱浸鍍試片之顯微結構與生成相 39  4.2 高溫恆溫氧化實驗 45 4.2.1 短時間之恆溫氧化試驗 45 4.2.1.1 低碳鋼熱浸試片 45 4.2.1.2 鎳基超合金IN-718熱浸試片 55 4.2.2 長時間之恆溫氧化試驗 59 4.2.2.1 低碳鋼熱浸試片 59 4.2.2.2 鎳基超合金IN-718熱浸試片 76 4.2.3 於氬氣氣氛下之擴散處理試驗 90 4.2.4 高溫恆溫氧化動力學 95 4.2.4.1 低碳鋼熱浸鍍試片 95 4.2.4.2鎳基超合金IN-718熱浸試片 102  4.3 高溫循環氧化實驗 103 4.3.1 低碳鋼熱浸試片 103 4.3.1.1 LCAl試片 103 4.3.1.2 LCAl-7Si試片 105 4.3.1.3 LCAl-10Si試片 109 4.3.2 鎳基超合金IN-718及其熱浸試片 113 4.3.2.1循環氧化動力學曲線 113 4.3.2.2 INAl試片 115 4.3.2.3 INAl-7Si試片 116 4.3.2.4 INAl-10Si試片 121 第五章 討論 123 5.1 熱浸鍍鋁塗層 123 5.1.1 鋁塗層之生成 123 5.1.2 矽元素對於合金化層之厚度值與其界面形態的作用性 124 5.2 鋁化塗層之高溫氧化行為 128 5.2.1 鋁元素之作用性 128 5.2.2 鋁化塗層之成長與其介金屬化合物之分佈 130 5.2.3 中間擴散層之影響性 136 5.2.4 矽元素對於塗層之高溫氧化行為的作用性 138 5.2.5 熱循環效應之影響性 141 5.3 鋁化塗層之失效機制 144 5.3.1 鋁元素之消耗行為 144 5.3.2 空孔組織之生成 146 5.3.3 裂縫之生成 148 5.3.4 鋁化塗層之失效特徵 149 5.4 低碳鋼和IN-718合金熱浸鍍試片之塗層於高溫環境之成長反應 150 第六章 結論 159 參考文獻 161 附錄1.1 熱浸鍍試驗後塗層組成相之X-ray繞射分析圖 168 附錄1.2 LCAl試片鋁化塗層組成相之X-ray繞射分析圖 169 附錄1.3 LCAl-7Si試片鋁化塗層組成相之X-ray繞射分析圖 170 附錄1.4 LCAl-10Si試片鋁化塗層組成相之X-ray繞射分析圖 171 附錄1.5 INCONEL 718合金於1100℃經240次循環試驗後之X-ray繞射分析圖 172 附錄1.6 INAl試片鋁化塗層經由高溫氧化試驗後其組成相之X-ray繞射分析圖 173 附錄1.7 INAl-7Si試片鋁化塗層經由高溫氧化試驗後其組成相之X-ray繞射分析圖 174 附錄1.8 INAl-10Si試片鋁化塗層經由高溫氧化試驗後其組成相之X-ray繞射分析圖 175 作者簡介 176 未來研究之建議 177

    1. C. J. Wang and C. C. Li, Surf. Coat. Technol. 177-178 (2003) 37.
    2. B. Pieraggi, Mater. Sci. Eng. 88 (1987) 199.
    3. M. K. Miller, S. S. Babu, and M. G. Burke, Mater. Sci. Eng. A270 (1999) 14.
    4. S. Kobayashi and T. Yakou, Mater. Sci. Eng. A338 (2002) 44.
    5. F. J. Perez, F. Pedraza, M. P. Hierro, J. Balmain, and G. Bonnet, Surf. Coat. Technol. 153 (2002) 49.
    6. S. C. Deevi and V. K. Sikka, Intermetallics 4 (1996) 357.
    7. J. Huang, H. Fang, X. Fu, F. Huang, H. Wan, Q. Zhang, S. Deng, and J. Zu, Oxid. Met. 53 (2000) 274.
    8. C. H. Koo, C. Y. Bai, and Y. J. Luo, Mater. Chem. Phys. 86 (2004) 258.
    9. M. S. Chu and S. K. Wu, Surf. Coat. Technol. 179 (2004) 257.
    10. A. Bahadur and O. N. Mohanty, Mater. Trans. JIM. 32 (1991) 1053.
    11. D. Wang, Z. Shi, and L. Zou, Surf. Sci. 214 (2003) 304.
    12. A. U1-Hamid, Corros. Sci. 46 (2004) 27.
    13. N. R. Lindblad, Oxid. Met. 1 (1969) 143.
    14. C. C. Tsaur, J. C. Rock, and Y. Y. Chang, Mater. Chem. Phys. 91 (2005) 330.
    15. R. Sivakumar and E. Janardhana Rao, Oxid. Met. 17 (1982) 391.
    16. G. A. Capuano, A. Dang, U. Bernabai, and F. Felli, Oxid. Met. 39 (1993) 263.
    17. T. Zhang and L. Dy, Mater. Sci. Eng. A277 (2000) 18.
    18. T. C. Simpson, Corrosion 49 (1993) 550.
    19. G. W. Goward, Surf. Coat. Technol. 108-109 (1998) 73.
    20. A. L. Purvis and B. M. Warnes, Surf. Coat. Technol. 146-147 (2001) 1.
    21. J. An, Y. B. Liu, M. Z. Zhang, and B. Yang, J. Mater. Process. Technol. 120 (2002) 30.
    22. A. Bahadur and O. N. Mohanty, Mater. Trans. JIM 32 (1991) 1053.
    23. G. Eggeler, W. Auer, and H. Kaesche, J. Mater. Sci. 21 (1986) 3348.
    24. D. O. Gittings, D. H. Rowland, and J. O. Mack, Tran. ASM 43 (1951) 587.
    25. S. H. Hwang, J. H. Song, and Y. S. Kim, Mater. Sci. Eng. A390 (2005) 437.
    26. K. L. Wang, F. S. Chen, and G. S. Leu, Mater. Sci. Eng. A357 (2003) 27.
    27. C. H. Koo and T. H. Yu, Surf. Coat. Technol. 126 (2000) 171.
    28. Z. Tang, L. Niewolak, V. Shemet, L. Singheiser, W. J. Quadakkers, F. Wang, W. Wu, and A. Gil, Mater. Sci. Eng. A328 (2002) 297.
    29. F. J. Perez, M. P. Hierro, C. Carpintero, F. Pedraza, and C. Gomez, Surf. Coat. Technol. 140 (2001) 93.
    30. H. J. Kim and M. E. Walter, Mater. Sci. Eng. A360 (2003) 7.
    31. F. H. Stott, Rep. Prog. Phys. 50 (1987) 861.
    32. G. W. Goward, Mater. Sci. Technol. 2 (1986) 194.
    33. S. T. Bluni and A. R. Marder, Corrosion 52 (1996) 213.
    34. S. R. J. Saunders and J. R. Nicholls, Mater. Sci. Technol. 5 (1989) 780.
    35. F. H. Stott, G. C. Wood, and J. Stringer, Oxid. Met. 44 (1995) 113.
    36. P. S. Liu, K. M. Liang, and S. R. Gu, Corros. Sci. 43 (2001) 1217.
    37. F. Barbier, D. Manuelli, and K. Bouche, Script. Mater. 36 (1997) 425.
    38. F. Barbier, D. Manuelli, and K. Bouche, Script. Mater. 36 (1997) 425.
    39. S. Becker, A. Rahmel, M. Schorr, and M. Schutze, Oxid. Met. 38 (1992) 425.
    40. A. J. Stavros, ‘Metals handbook’, American Society for Metals, 9th Edn.,Vol.13 (1983) 432-445.
    41. F. M. Robert, ‘Metals handbook’, American Society for Metals, 9th Edn.,Vol.5 (1983) 333-347.
    42. T. Matsubara, K. Uenishi, and K. F. Kobayashi, Mater. Trans. JIM 41 (2000) 631.
    43. M. Schutze, M. Malessa, V. Rohr, and T. Weber, Surf. Coat. Technol. 201 (2006) 3872.
    44. P. N. Bindumadhavan, S. Makesh, N. Gowrishankar, H. K. Wah, O. Prabhakar, Surf. Coat. Technol. 127 (2000) 252.
    45. R. W. Richards, R. D. Jones, P. D. Clements, and H. Clarke, Int. Mater. Rev. 39 (1994) 191.
    46. G. C. Rybicki and J. L. Smialek, Oxid. Met. 31 (1989) 275.
    47. S. C. Kwon and J. Y. Lee, Can. Metall. Q. 20 (1981) 351.
    48. M. A. Shady, A. R. EI-Sissi, A. M. Attia, N. A. EI-Mahallawy, M. A. Taha, and W. Reif, J. Mater. Sci. Lett. 15 (1996) 1032.
    49. K. G. Coburn, Met. Eng. Q. Feb. (1964) 54.
    50. G. Navas and L. Viloria, Surf. Coat. Technol. 94-95 (1997) 161.
    51. V. G. Rivlin and G. V. Raynor, Int. Met. Rev. 26 (1981) 133.
    52. Y. R. Zheng, Y. L. Cai, L. S. Mo, and Z. L. Yang, J. Mater. Eng. 13 (1991) 39.
    53. C. C. Lee, E. S. Machlin, and H. Rathore, J. Appl. Phys. 71 (1992) 5877.
    54. S. G. Young and D. L. Deadmore, NASA-TM-81455 (1980).
    55. K. Murakami, N. Nishida, K. Osamura, Y. Tomota, and T. Suzuki, Acta Mater. 52 (2004) 2173.
    56. G. M. Bedford and J. Boustead, Met. Tecchnol. 1 (1974) 233.
    57. J. E. Nicholls, Corr. Technol. 11 (1964) 16.
    58. T. Heumann and S. Dittrich, Z. Metallkd. 50 (1959) 617.
    59. R. W. Richards, PhD thesis, University of Wales, Cardiff, 1989.
    60. T. B. Massalski and H. Okamoto, Binary Alloy Phase Diagrams, Vol. 1. ASM International, 1990, p.212.
    61. T. B. Massalski and H. Okamoto, Binary Alloy Phase Diagrams, Vol. 1. ASM International, 1990, p.148.
    62. E. G. Ivanov, Met. Sci. Heat Treat 21 (1979) 449.
    63. J. L. Jordan and S. C. Deevi, Intermetallics 11 (2003) 507.
    64. M. Kogachi and T. Haraguchi, Mater. Sci. Eng. A230 (1997) 124.
    65. T. Maitra and S. P. Gupta, Mater. Charact. 49 (2003) 293.
    66. K. Bouche, F. Barbier, and A. Coulet, Mater. Sci. Eng. A249 (1998) 167.
    67. D. Wang and Z. Shi, Appl. Surf. Sci. 227 (2004) 255.
    68. K. Stein-Fechner, J. Konys, and O. Wedemeyer, J. Nucl. Mater. 249 (1997) 33.
    69. D. R. G. Achar, J. Ruge, and S. Sundaresan, “Joining Aluminum and Steel, Especially by Means of Welding,” Aluminum Monography, Aluminum-Verlag, Dusseldorf, 1980.
    70. T. B. Massalski and H. Okamoto, Binary Alloy Phase Diagrams, Vol. 1. ASM International, 1990, p.182.
    71. H. M. Tawancy, N. M. Abbas, and T. N. R. Jones, Surf. Coat. Technol. 49 (1991) 1.
    72. Y. R. Zheng, Y. L. Cai, L. S. Mo, and Z. L. Yang, J. Mater. Eng. 13 (1991) 39.
    73. G. F. Slattery, Met. Technol. 10 (1983) 41.
    74. R. Sivakumar and B. L. McMordie, Surf. Coat. Technol. 37 (1989) 160.
    75. G. W. Goward and D. H. Boone, Oxid. Met. 3 (1971) 475.
    76. G. W. Goward, J. Met. Oct. (1970) 31.
    77. D. K. Das, V. Singh, and S. V. Joshi, Metall. Mater. Trans. A 29 (1998) 2173.
    78. W. F. Gale and J. E. King, Metall. Trans. A 23 (1991) 2657.
    79. R. W. Guard and E. A. Smith, J. Inst. Met. 88 (1959) 283.
    80. L. N. Larikov, V. M. Falchenko, D. F. Polishebuk, V. R. Ryabov, and A. V. Lonovskays, in: G. V. Samsonov (Ed.), Protective Coatings on Metals, vol. III, Consultant Bureau, New York, 1971, p. 56.
    81. S. G. Denner and R. D. Jones, Met. Technol. 4 (1977) 167.
    82. S. G. Denner, PhD thesis, University of Wales, Cardiff, 1976.
    83. N. A. EI-Mahallawy, M. A. Taha, M. A. Shady, A. R. EI-Sissi, A. N. Attia, and W. Reif, Mater. Sci. Technol. 13 (1997) 832.
    84. H. J. Lamb and M. J. Wheeler, J. Inst. Met. 92 (1963) 150.
    85. G. Eggeler, H. Vogel, J. Friedrich, and H. Kaesche, Prakt. Metallog. 22 (1985) 163.
    86. Y. W. Kim and R. A. Nikola, SAE tech. Paper No. 800316, Society of Automotive Engineers, Warrendale, PA, 190.
    87. G. Benamati, P. Buttol, A. Casagrande, and C. Fazio, J. Nucl. Mater. 230 (1996) 214.
    88. W. F. Gale and J. E. King, Surf. Coat. Technol. 54-55 (1992) 8.
    89. C. T. Sims, J. Met. Oct. (1966) 1119.
    90. F. S. Pettit and G. W. Goward, in M. J. Donachie (Ed.), Superalloys Source Book, American Society for Metals, Metals Park, OH, 1984, p. 170.
    91. P. Shen, D. Gan, and C. C. Lin, Mater. Sci. Eng. 78 (1986) 171.
    92. W. F. Gale and J. E. King, Metall. Trans. A 23 (1991) 2657.
    93. V. N. Yeremenko, Y. V. Nantanzon, and V. I. Dybkov, J. Mater. Sci. 16 (1981) 1748.
    94. A. Maricocchi, A. Bartz, and D. Wortman, J. Therm. Spray Technol. 6 (1997) 193.
    95. Y. Zhang, J. A. Haynes, W. Y. Lee, I. G. Wright, B. A. Pint, K. M. Cooley, and P. K. Liaw, Metall. Mater. Trans., A, Phys. Metall. Mater. Sci. 32 (2001) 1727.
    96. A. Chien, D. Gan, and P. Shen, Mater. Sci. Eng. A206 (1996) 215.
    97. P. Shen, D. Gan, and C. C. Lin, Mater. Sci. Eng. 78 (1986) 163.
    98. G. W. Goward, D. H. Boone, and C. S. Giggins, ASM Trans. Quart. 60 (1967) 228.
    99. T. K. Redden, Trans. TMS-AIME 242 (1968) 1695.
    100. M. J. Fleetwood, J. Inst. Met. 98 (1970) 1.
    101. A. D. Smigelskas and E. O. Kirkendall, Trans. AIME, 171 (1947) 130.
    102. EA Brande, editor. Smithells Metals Reference Book, 6th ed: Butherworht; 1983 p. 8.
    103. H. Glasbrennerand J. Konys, Fusion Eng. Des. 58-59 (2001) 725.
    104. H. Glasbrenner and H. U. Borgstedt, J. Nucl. Mater. 212-215 (1994) 1561.
    105. T. Kimata, K. Uenishi, A. Ikenaga, and K. F. Kobayashi, Intermetallics 11 (2003) 947.
    106. H. Glasbrenner and O. Wedemeyer, J. Nucl. Mater. 257 (1998) 274.
    107. A. F. Gibson, F. M. Kilbane, and F. C. Dunbar, SAE Tech. Paper No. 810037, Society of Automotive Engineers, Warrendale, PA, 1981.
    108. ‘Use of aluminised steels in gas appliances’, Circular 1054, British Gas, Reserch and Development Division, Watson House, Fulham, London, 1980.
    109. S. G. Denner and Y. W. Kim, in Proc. 112th AIME Annual Meeting, Atlanta, GA, 1983, 233-249, 1983, New York, Metallurgical Society of AIME.
    110. T. Amano, S. Yajima, T. Kimura, and Y. Saito, Corros. Eng. 24 (1975) 19.
    111. F. H. Stott, Mater. Sci. Technol. 431 (1988) 431.
    112. A. G. Evans, G. B. Crumley, and R. E. Demaray, Oxid. Met. 20 (1983) 193.
    113. G. H. Meier, Mater. Sci. Eng. A120 (1989) 1.
    114. Elements and Alloys, Produced by TPRC, Purdue University, Indiana, IFI/Plenum, New York-Washington ISBN 0-306-67032-1, 1975
    115. T. Sasaki and T. Yakou, Surf. Coat. Technol. 201 (2006) 2131.
    116. S. W. Banovic, J. N. DuPont, and A. R. Marder, Oxid. Met. 54 (2000) 339.
    117. P. S. Liu, K. M. Liang, and S. R. Gu, Oxid. Met. 54 (2000) 277.
    118. F. Lang, Z. Yu, S. Gedevanishvili, S. C. Deevi, and T. Narita, Intermetallics 11 (2003) 697.
    119. T. K. Redden, Trans. TMS-AIME 242 (1968) 1695.
    120. V. Shankar, A. L. E. Terrance, and S. Venkadesan, J. Mater. Sci. 29 (1994) 5424.
    121. F. A. Khalid, N. Hussain, and K. A. Shahid, Mater. Sci. Eng. A265 (1999) 87.
    122. B. Gleeson and M. A. Harper, Oxid. Met. 49 (1998) 373.
    123. R. L. McCarron, N. R. Lindblad, and D. Chatterji, Corr. 32 (1976) 476.
    124. E. Godlewska and K. Godlewski, Oxid. Met. 22 (1984) 117.
    125. A. D. Le Claire, in: H. Mehrer (ED.), Numerical Data and Functional Relationship in Science and Technology, Springer, 129 (1990) 26.

    QR CODE