簡易檢索 / 詳目顯示

研究生: 方珮雯
Pei-Wen Fang
論文名稱: 電腦繪圖計算機習題設計、學生先備知識、學習進展與行為模式之相關研究----以Desmos二次函數學習模組為例
The Relationships of Design in Computer Graphing Calculator Problems, Prior Knowledge and Learning Progress to Students’ Behavior Patterns----A Case Study of Desmos’ Quadratic Function Learning Modules
指導教授: 蔡今中
Chin-Chung Tsai
口試委員: 蔡今中
Chin-Chung Tsai
蔡孟蓉
Meng-Jung Tsai
侯惠澤
Huei-Tse Hou
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 186
中文關鍵詞: 電腦繪圖計算機函數學習先備知識數學理解層次學習模組二次函數認知負荷示例引導效應專家反轉效應發現式學習行為頻率行為模式
外文關鍵詞: computer graphing calculator, learning of function, prior knowledge, learning module, quadratic function, cognitive overload, worked-example effect, expertise reversal effect, discovery learning, behavior frequency, behavior pattern, mathematical understanding
相關次數: 點閱:298下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電腦繪圖計算機增進了函數學習的效率。學生能快速繪製函數圖形,也能調整特定係數,觀察方程式與函數圖形的表徵轉換,這些行為有助其理解特定係數的功能與意義,進而為真實情境建立合適的數學模型。然而,電腦輔助教學之學習模組設計,需考量性向處理交互作用,以及多媒體設計原則,因應學生的先備知識多寡彈性調整,才能確保學生真正理解教師欲傳達的數學概念。
    本研究二次函數圖形為主題,以Desmos電腦繪圖計算機為研究工具,設計示例引導、探索式兩種學習模組,將受測學生分為高先備、低先備知識組,透過相關分析、滯後序列分析與循序樣式探勘,分析前測成績、學習進展、先備知識分組與題組操作行為頻率的相關性,並比較不同先備知識學生,在不同的題組設計中,行為模式是否有差異,嘗試以數學理解層次理論解釋。
    行為頻率相關分析結果顯示,在示例引導題組,先備知識越低,多數類別的行為頻率越高,代表受試者需要經歷較長的試誤過程,達到與先備知識較高者相近的數學理解層次;另外,學習進展越高,會有較多的觀察性質行為。而在探索式題組,先備知識較低者則有較頻繁的觀察性質行為和較低的完成答題率;學習進展越高,反而出現較少的觀察性質行為。
    行為模式分析結果顯示,相較於示例引導題組,受試者在探索式題組的行為歧異度較高。雖能觀察出高先備組更擅長以特定參數概括問題情境,但不能單純以函數先備知識區分行為差異,需考量受試者的遊戲經驗和力學知識。
    另外,分心行為在兩種題組都沒有與任何依變項達顯著相關,但透過滯後序列分析和循序樣式探勘,可以推測受試者出現認知負荷的前因後果,亦即示例引導效應、專家反轉效應、元素互動性效應的存在。
    本研究行為頻率相關分析未達顯著高相關,行為模式分析也僅能用以初步推測學生的解題策略,顯示研究樣本數、學習環境、研究工具、題組設計和實驗設計均有未臻完善之處。除了改善研究方法,未來研究應可加強答題回饋功能、增加質化訪談的深度或廣度、使用多元迴歸分析將更多變因納入考量,以拼湊出學生完整的學習歷程。


    Computer graphing calculators increase efficiency of learning of functions. With computer graphing calculators, students can generate graphs of functions quickly, adjust specific parameters, and then observe the transformation of representations. These behaviors enable students to understand features and meanings of specific parameters, and to build suitable mathematical models for real-life situations.
    On the topic of quadratic functions, the researcher designed worked-example and discovery learning modules with Desmos, an online graphing calculator. The ninth-grade subjects are divided into two groups based on prior knowledge. In the correlation analysis, the researcher analyzed relationships between behavior frequencies and three variables: pretest score, learning progress, and grouping of prior knowledge. In the sequential analysis and the sequential pattern mining, the researcher compared differences of behavior patterns between high and low prior knowledge (PK) group in two different learning modules, and gave further explanations with the dynamical theory for the growth of mathematical understanding.
    The results of correlation analysis show that in the worked-example module, less PK leads to more behaviors in most behavior categories. It means that subjects of lower PK experienced longer trial and error process to reach same levels of mathematical understanding as subjects of higher PK. In addition, more learning progress leads to more property-observing behaviors. Comparatively in the discovery learning module, less PK leads to more property-observing behaviors and lower completion rate.
    On the other hand, results of behavior analysis show that the subjects have more diverse behaviors in the discovery learning module than those in the worked-example module. The high-PK group is expert in generalizing problem situation, but we cannot distinguish differences of behaviors without considering subjects’ gaming experience and knowledge of Mechanics.
    Less but not the least, distraction doesn’t significantly correlate to any dependent variables. However, it is helpful for us to conjecture cause and effect of subjects’ cognitive overload, in other words the existence of worked-example effect, expertise reversal effect, and interactivity effect.
    The correlation analysis fails to prove any significantly correlated behaviors. Also, the behavior analysis can only be used to preliminarily speculate on students' problem-solving strategies. Those results reveal that there is room for improvement for number of subjects, learning environment, research tools, module design and experimental design in this research. In addition to improvement of research methods, we can enhance feedback mechanisms of learning modules, increase the depth or breadth of qualitative interviews, and use multiple regression analysis to take more variables into account. Hopefully we can piece together the complete learning process of students in the future.

    第一章 緒論 - 1 - 1.1 研究背景與動機 - 1 - 1.2 研究目的與問題 - 5 - 第二章 文獻探討 - 7 - 2.1 二次函數課程內涵與地位 - 7 - 2.1.1 函數課程的內涵 - 7 - 2.1.2 我國二次函數學習能力指標 - 8 - 2.1.3 多元表徵轉換 - 11 - 2.2 電腦輔助函數學習 - 13 - 2.2.1 電腦輔助代數學習 - 13 - 2.2.2 CAS融入二次函數教學文獻回顧 - 15 - 2.2.3 模擬導向教學(simulation-based learning) - 18 - 2.3 先備知識 - 21 - 2.3.1 先備知識與學習表現 - 21 - 2.3.2 專家與新手的先備知識 - 22 - 2.3.3 先備知識與電腦輔助學習 - 23 - 2.3.4 先備知識與多媒體設計原則 - 25 - 2.4 數學理解層次 - 30 - 2.4.1 數學理解的定義 - 30 - 2.4.2 數學理解成長模型 - 32 - 2.4.3 二次函數的數學理解層次 - 34 - 第三章 研究方法 - 37 - 3.1 研究流程 - 37 - 3.2 研究設計 - 38 - 3.2.1 研究法的選擇 - 38 - 3.2.2 研究架構 - 38 - 3.2.3 研究變項 - 39 - 3.2.4 實驗流程 - 42 - 3.3 研究對象 - 44 - 3.3.1 預試樣本 - 44 - 3.3.2 正式施測樣本 - 44 - 3.4 研究工具 - 48 - 3.4.1 學習模組設計 - 48 - 3.4.2 前後測試卷製作 - 55 - 3.4.3 行為模式分析編碼表 - 58 - 3.5 資料分析 - 64 - 3.5.1 SPSS Statistics 25.0 - 64 - 3.5.2 GSEQ 51 (Generalized Sequential Querier 51) - 65 - 3.5.3 PrefixSpan循序樣式探勘演算法 - 65 - 3.5.4 受試者訪談 - 67 - 第四章 實驗結果與分析 - 68 - 4.1 示例引導題組 - 69 - 4.1.1 行為頻率相關分析 - 69 - 4.1.2 滯後序列分析 - 75 - 4.1.3 循序樣式探勘 - 84 - 4.2 探索式題組 - 92 - 4.2.1 行為頻率相關分析 - 92 - 4.2.2 滯後序列分析 - 96 - 4.2.3 循序樣式探勘 - 104 - 第五章 結論 - 115 - 5.1 研究結果 - 115 - 5.1.1 行為頻率相關性 - 115 - 5.1.2 題組操作行為模式 - 117 - 5.1.3 數學理解層次 - 118 - 5.2 研究限制 - 120 - 5.3 未來展望 - 122 - 附錄一 二次函數理解測驗前測 - 131 - 附錄二 二次函數理解測驗後測 - 134 - 附錄三 示例引導題組與答題範例 - 137 - 附錄四 示例引導題組循序樣式探勘結果 - 141 - 附錄五 探索式題組與答題範例 - 150 - 附錄六 探索式題組循序樣式探勘結果 - 156 -

    台灣PISA. (2013). PISA 數學應試指南. Retrieved from PISA in Taiwan (PISA國家研究中心) website: http://pisa.nutn.edu.tw/download/sample_papers/2009/2013_0311_guide_mathematics.pdf
    吕锋, & 张炜玮. (2006). 4 种序列模式挖掘算法的特性研究. 武漢理工大學學報, 28(2), 57-60.
    呂慧君, & 姚如芬. (2005). 電腦加數學等於多少?-資訊融入數學科教學應用. 屏東教大科學教育第二十二期.
    陈卓, 杨炳儒, 宋威, & 宋泽锋. (2008). 序列模式挖掘综述.
    國家教育研究院. (民105年2月). 十二年國民基本教育課程綱要數學領域(草案). Retrieved from 十二年國民基本教育課程綱要數學領域(草案) website: https://www.naer.edu.tw/ezfiles/0/1000/attach/37/pta_10147_1655251_02807.pdf
    張春興. (2007). 教育心理學: 三化取向的理論與實踐: 臺灣東華.
    教育部國民及學前教育署. (民92年11月14日). 國民中小學九年一貫課程綱要數學學習領域. Retrieved from 97年國民中小學九年一貫課程綱要 website: https://www.k12ea.gov.tw/97_sid17/980424數學課程綱要修訂(單冊).pdf
    梁育維, & 陳芳慶. (2015). 資訊融入教學對學習態度影響之後設分析. 中等教育, 66(2), 100-125.
    陳彥廷, & 柳賢. (2009). 運用提問方法促進中學生對代數式中文字符號語意理解之研究: 提問模型建構. 科學教育學刊, 17(3), 203-231.
    曾憲雄、蔡秀滿、蘇東興、曾秋蓉與王慶堯. (2005). 資料探勘. 台北: 旗標出版社.
    鄭芬蘭. (2000). Aptitude-Treatment Interaction, ATI - 性向處理交互作用.
    Alexander, P. A., & Judy, J. E. (1988). The interaction of domain-specific and strategic knowledge in academic performance. Review of educational research, 58(4), 375-404.
    Alexander, P. A., Schallert, D. L., & Hare, V. C. (1991). Coming to terms: How researchers in learning and literacy talk about knowledge. Review of educational research, 61(3), 315-343.
    Asp, G., Dowsey, J., & Stacey, K. (1993). Linear and quadratic graphs with the aid of technology. Contexts in mathematics education, 51-56.
    Azevedo, R., & Cromley, J. G. (2004). Does training on self-regulated learning facilitate students' learning with hypermedia? Journal of educational psychology, 96(3), 523.
    Baker, B., Hemenway, C., & Trigueros, M. (2000). On transformations of basic functions. Paper presented at the Proceedings of the 12th ICMI Study Conference on the Future of the Teaching and Learning of Algebra, University of Melbourne.
    Balacheff, N., & Kaput, J. J. (1996). Computer-based learning environments in mathematics International handbook of mathematics education (pp. 469-501): Springer.
    Bétrancourt, M. (2005). The animation and interactivity principles in multimedia learning.
    Blissett, G., & Atkins, M. (1993). Are they thinking? Are they learning? A study of the use of interactive video. Computers & Education, 21(1-2), 31-39.
    Borba, M. C., & Confrey, J. (1996). A student's construction of transformations of functions in a multiple representational environment. Educational Studies in Mathematics, 31(3), 319-337.
    Bossé, M. J., Adu-Gyamfi, K., & Cheetham, M. R. (2011). Assessing the difficulty of mathematical translations: Synthesizing the literature and novel findings. International Electronic Journal of Mathematics Education, 6(3), 113-133.
    Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Durán, R., Reed, B. S., & Webb, D. (1997). Learning by understanding: The role of multiple representations in learning algebra. American Educational Research Journal, 34(4), 663-689.
    Bringula, R. P., Basa, R. S., Dela Cruz, C., & Rodrigo, M. M. T. (2016). Effects of prior knowledge in mathematics on learner-interface interactions in a learning-by-teaching intelligent tutoring system. Journal of Educational Computing Research, 54(4), 462-482.
    Buchberger, B. (1990). Should students learn integration rules? ACM Sigsam Bulletin, 24(1), 10-17.
    Carlson, M., Oehrtman, M., & Thompson, P. (2005). Key aspects of knowing and learning the concept of function. Mathematical Association of America Research Sampler, 9.
    ChanLin, L. (2001). Formats and prior knowledge on learning in a computer‐based lesson. Journal of Computer Assisted Learning, 17(4), 409-419.
    Charney, D., Reder, L., & Kusbit, G. W. (1990). Goal setting and procedure selection in acquiring computer skills: A comparison of tutorials, problem solving, and learner exploration. Cognition and instruction, 7(4), 323-342.
    Chen, S. Y., Fan, J.-P., & Macredie, R. D. (2006). Navigation in hypermedia learning systems: experts vs. novices. Computers in Human Behavior, 22(2), 251-266.
    Chi, M. T. (2006). Laboratory methods for assessing experts’ and novices’ knowledge. The Cambridge handbook of expertise and expert performance, 167-184.
    Chi, M. T., Glaser, R., & Farr, M. J. (2014). The nature of expertise: Psychology Press.
    Chi, M. T., Glaser, R., & Rees, E. (1981). Expertise in problem solving. Retrieved from
    Clark, R. C., Nguyen, F., Sweller, J., & Baddeley, M. (2006). Efficiency in learning: Evidence‐based guidelines to manage cognitive load. Performance Improvement, 45(9), 46-47.
    de Jong, A. J., & Lazonder, A. W. (2014). The guided discovery principle in multimedia learning The Cambridge handbook of multimedia learning 2nd edition: Cambridge University Press.
    Demana, F. (2000). Calculators in mathematics teaching and learning. Learning mathematics for a new century, 51.
    Devolder, A., van Braak, J., & Tondeur, J. (2012). Supporting self‐regulated learning in computer‐based learning environments: systematic review of effects of scaffolding in the domain of science education. Journal of Computer Assisted Learning, 28(6), 557-573.
    Dochy, F., De Rijdt, C., & Dyck, W. (2002). Cognitive prerequisites and learning: How far have we progressed since Bloom? Implications for educational practice and teaching. Active learning in higher education, 3(3), 265-284.
    Dochy, F., Segers, M., & Buehl, M. M. (1999). The relation between assessment practices and outcomes of studies: The case of research on prior knowledge. Review of educational research, 69(2), 145-186.
    Dochy, F. J., Moerkerke, G., & Martens, R. (1996). Integrating assessment, learning and instruction: Assessment of domain-specific and domaintranscending prior knowledge and progress. Studies in educational evaluation, 22(4), 309-339.
    Drijvers, P. H. M. (2003). Learning algebra in a computer algebra environment: Design research on the understanding of the concept of parameter.
    Duncan, A. G. (2010). Teachers’ views on dynamically linked multiple representations, pedagogical practices and students’ understanding of mathematics using TI-Nspire in Scottish secondary schools. ZDM, 42(7), 763-774.
    Edwards, T. G., & Ozgun-Koca, S. A. (2010). A Historical Perspective from "a" to "c". Mathematics Teaching in the Middle School, 15(8), 458-465.
    Gagatsis, A., & Shiakalli, M. (2004). Ability to translate from one representation of the concept of function to another and mathematical problem solving. Educational Psychology, 24(5), 645-657.
    Godwin, S., & Sutherland, R. (2004). Whole‐class technology for learning mathematics: the case of functions and graphs. Education, Communication & Information, 4(1), 131-152.
    Gredler, M. E. (2004). Games and simulations and their relationships to learning. Handbook of research on educational communications and technology, 2, 571-581.
    Hailikari, T., Nevgi, A., & Komulainen, E. (2008). Academic self‐beliefs and prior knowledge as predictors of student achievement in Mathematics: a structural model. Educational Psychology, 28(1), 59-71. doi:10.1080/01443410701413753
    Heid, M. K., Thomas, M. O., & Zbiek, R. M. (2012). How Might Computer Algebra Systems Change the Role of Algebra in the School Curriculum? Third international handbook of mathematics education (pp. 597-641): Springer.
    Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. Conceptual and procedural knowledge: The case of mathematics, 2, 1-27.
    Hitt, F. (1998). Difficulties in the articulation of different representations linked to the concept of function. The Journal of Mathematical Behavior, 17(1), 123-134.
    Hoyles, C., & Noss, R. (2003). What can digital technologies take from and bring to research in mathematics education? Second international handbook of mathematics education (pp. 323-349): Springer.
    Janvier, C. (1987). Translation processes in mathematics education. Problems of representation in the teaching and learning of mathematics, 27, 32.
    Johnston, P., & Pearson, P. D. (1982). Prior Knowledge, Connectivity, and the Assessment of Reading Comprehension. Technical Report. No. 245.
    Kalyuga, S. (2005). Prior knowledge principle in multimedia learning. The Cambridge handbook of multimedia learning, 325-337.
    Kalyuga, S. (2008). Relative effectiveness of animated and static diagrams: An effect of learner prior knowledge. Computers in Human Behavior, 24(3), 852-861.
    Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The Expertise Reversal Effect. Educational Psychologist, 38(1), 23-31. doi:10.1207/S15326985EP3801_4
    Kalyuga, S., Chandler, P., & Sweller, J. (2001). Learner experience and efficiency of instructional guidance. Educational Psychology, 21(1), 5-23.
    Kendal, M., Stacey, K., & Pierce, R. (2005). The influence of a computer algebra environment on teachers’ practice The didactical challenge of symbolic calculators (pp. 83-112): Springer.
    Kong, S.-C. (1999). An interactive teaching and learning environment for graph sketching. Computers & Education, 32(1), 1-17.
    Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of educational research, 60(1), 1-64.
    Lesh, R., & M. Doerr, H. (2003). Beyond constructivism. Models and modeling perspectives on mathematics problem solving, learning, and teaching.
    Lesh, R., Post, T. R., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving Problems of representations in the teaching and learning of mathematics: Lawrence Erlbaum.
    Li, Z. Z., Cheng, Y. B., & Liu, C. C. (2013). A constructionism framework for designing game‐like learning systems: Its effect on different learners. British Journal of Educational Technology, 44(2), 208-224.
    Lin, F.-C., Chen, C.-M., & Wang, W.-F. (2017). Learning Process Analysis Based on Sequential Pattern Mining and Lag Sequential Analysis in a Web-Based Inquiry Science Environment. Paper presented at the 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI).
    Mampadi, F., & Mokotedi, A. P. (2012). Towards effective combination of prior knowledge and cognitive styles in adaptive educational hypermedia systems. International Journal of Emerging Technologies in Learning (iJET), 7(3), 11-18.
    Martin, L., LaCroix, L., & Fownes, L. (2005). Folding Back and the Growth of Mathematical Understanding in Workplace Training. Adults Learning Mathematics, 1(1), 19-35.
    Martin, L., & Pirie, S. (2003). Making images and noticing properties: The role of graphing software in mathematical generalisation. Mathematics Education Research Journal, 15(2), 171-186. doi:10.1007/bf03217377
    Martin, L. C., & Towers, J. (2015). Growing mathematical understanding through Collective Image Making, Collective Image Having, and Collective Property Noticing. Educational Studies in Mathematics, 88(1), 3-18. doi:10.1007/s10649-014-9552-4
    Matsumoto, P. S. (2014). Exploring interactive and dynamic simulations using a computer algebra system in an advanced placement chemistry course. Journal of Chemical Education, 91(9), 1326-1333.
    Mayer, R. E. (1987). Educational psychology: A cognitive approach: Scott Foresman & Co.
    Mayer, R. E., & Anderson, R. B. (1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. Journal of educational psychology, 84(4), 444.
    Mayer, R. E., & Chandler, P. (2001). When learning is just a click away: Does simple user interaction foster deeper understanding of multimedia messages? Journal of educational psychology, 93(2), 390.
    Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of educational psychology, 86(3), 389.
    Medvedev, F. A. (2012). Scenes from the history of real functions (Vol. 7): Birkhäuser.
    Meel, D. E. (2003). Models and theories of mathematical understanding: Comparing Pirie and Kieren’s model of the growth of mathematical understanding and APOS theory. CBMS Issues in Mathematics Education, 12, 132-181.
    Moos, D. C., & Azevedo, R. (2008). Self-regulated learning with hypermedia: The role of prior domain knowledge. Contemporary Educational Psychology, 33(2), 270-298.
    Najjar, L. J. (1996). Multimedia information and learning. Paper presented at the Journal of educational multimedia and hypermedia.
    National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics: National Council of Teachers of Mathematics.
    Ogbonnaya, U. (2010). Improving the teaching and learning of parabolic functions by the use of information and communication technology (ICT). African journal of research in Mathematics, Science and technology education, 14(1), 49-60.
    Park, S. I., Lee, G., & Kim, M. (2009). Do students benefit equally from interactive computer simulations regardless of prior knowledge levels? Computers & Education, 52(3), 649-655.
    Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., & Hsu, M.-C. (2001). Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. Paper presented at the icccn.
    Pirie, S., & Kieren, T. (1989). A recursive theory of mathematical understanding. For the Learning of Mathematics, 9(3), 7-11.
    Pirie, S., & Kieren, T. (1991). A Dynamic Theory of Mathematical Understanding: Some Features and Implications.
    Pirie, S., & Kieren, T. (1994). Growth in mathematical understanding: How can we characterise it and how can we represent it? Learning Mathematics (pp. 61-86): Springer.
    Pirie, S. E. (1988). Understanding: Instrumental, relational, intuitive, constructed, formalised...? How can we know? For the Learning of Mathematics, 8(3), 2-6.
    Pirie, S. E. B. (1996). Foreword. In B. Davis (Ed.), Teaching Mathematics: Toward a Sound Alternative (pp. xi-xvi). Garland, New York: Taylor & Francis.
    Pólya, G. (1962). Mathematical Discovery: On Understanding, Learning, and Teaching Problem Solving: Wiley.
    Renkl, A. (2005). The Worked-Out Examples Principle in Multimedia Learning. In R. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 229-246). Cambridge: Cambridge University Press.
    Rieber, L. P., & Parmley, M. W. (1995). To teach or not to teach? Comparing the use of computer-based simulations in deductive versus inductive approaches to learning with adults in science. Journal of Educational Computing Research, 13(4), 359-374.
    Rieber, L. P., Tzeng, S.-C., & Tribble, K. (2004). Discovery learning, representation, and explanation within a computer-based simulation: Finding the right mix. Learning and instruction, 14(3), 307-323.
    Ruthven, K., Deaney, R., & Hennessy, S. (2009). Using graphing software to teach about algebraic forms: A study of technology-supported practice in secondary-school mathematics. Educational Studies in Mathematics, 71(3), 279-297.
    Sierpinska, A. (1992). On understanding the notion of function (Vol. 25).
    Simmons, P. E., & Lunetta, V. N. (1993). Problem‐solving behaviors during a genetics computer simulation: Beyond the expert/novice dichotomy. Journal of Research in Science Teaching, 30(2), 153-173.
    Simmt, E. (1997). Graphing calculators in high school mathematics. Journal of Computers in Mathematics and Science Teaching, 16(2), 269-289.
    Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics teaching, 77(1), 20-26.
    Skemp, R. R. (1979). Goals of Learning and Qualities of Understanding. Mathematics teaching, 88, 44-49.
    Skemp, R. R. (1982). Symbolic Understanding. Mathematics teaching, 99, 59-61.
    Spyridakis, J. H., & Isakson, C. S. (1991). Hypertext: A new tool and its effect on audience comprehension. Paper presented at the Professional Communication Conference, 1991. IPCC'91. Proceedings. The Engineered Communication., International.
    Swaak, J., De Jong, T., & Van Joolingen, W. R. (2004). The effects of discovery learning and expository instruction on the acquisition of definitional and intuitive knowledge. Journal of Computer Assisted Learning, 20(4), 225-234.
    Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and instruction, 2(1), 59-89.
    Tan, J., & Biswas, G. (2007). Simulation-based game learning environments: Building and sustaining a fish tank. Paper presented at the Digital Game and Intelligent Toy Enhanced Learning, 2007. DIGITEL'07. The First IEEE International Workshop on.
    Thomas, M. (2009). Hand-held technology in the mathematics classroom: Developing pedagogical technology knowledge. Teaching secondary school students mathematics and statistics: Evidence based practice, 2, 147-160.
    Thomas, M. O. (2001). Building a conceptual algebra curriculum: The role of technological tools. Paper presented at the International Congress of Mathematical Instruction (ICMI) The Future of the Teaching and Learning of Algebra Proceedings.
    Thomas, M. O., Monaghan, J., & Pierce, R. (2004). Computer algebra systems and algebra: Curriculum, assessment, teaching, and learning The Future of the Teaching and Learning of Algebra The 12thICMI Study (pp. 153-186): Springer.
    Thompson, P. W. (1994). Students, functions, and the undergraduate curriculum. Research in collegiate mathematics education, 1, 21-44.
    Tuovinen, J. E., & Sweller, J. (1999). A comparison of cognitive load associated with discovery learning and worked examples. Journal of educational psychology, 91(2), 334.
    Voss, J. F., Blais, J., Means, M. L., Greene, T. R., & Ahwesh, E. (1986). Informal reasoning and subject matter knowledge in the solving of economics problems by naive and novice individuals. Cognition and instruction, 3(3), 269-302.
    White, B. Y. (1984). Designing computer games to help physics students understand Newton's laws of motion. Cognition and instruction, 1(1), 69-108.
    Winters, F. I., Greene, J. A., & Costich, C. M. (2008). Self-regulation of learning within computer-based learning environments: A critical analysis. Educational Psychology Review, 20(4), 429-444.
    Zazkis, R., Liljedahl, P., & Gadowsky, K. (2003). Conceptions of function translation: obstacles, intuitions, and rerouting. The Journal of Mathematical Behavior, 22(4), 435-448. doi:10.1016/j.jmathb.2003.09.003

    無法下載圖示 全文公開日期 2024/07/29 (校內網路)
    全文公開日期 2024/07/29 (校外網路)
    全文公開日期 2024/07/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE