簡易檢索 / 詳目顯示

研究生: 耿書涵
su-han ken
論文名稱: 以情境脈絡線索作為認知鷹架結合擴增實境的中學反毒教育桌上遊戲之學習成效與行為模式分析
The Analysis of Learners’ Behavioral Patterns and Learning Effectiveness of a Board Game for Junior High School Anti-Drug Education Integrating Contextual Clues as Cognitive Scaffolding in Augmented Reality
指導教授: 侯惠澤
Huei-Tse Hou
口試委員: 陳聖智
Sheng-zhi Chen
湯梓辰
Zi-chen Tang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: 情境式學習反毒教育認知鷹架桌遊遊戲式學習擴增實境心流行為模式
外文關鍵詞: contextual learning, anti-drug education, board games, game-based learning, augmented reality, flow, behavioral patterns, cognitive scaffold
相關次數: 點閱:530下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統以講述方式為主的反毒教育,對於學習者的學習動機、協作互動及學習深度有其限制。將反毒教育以活動的方式進行,透過情境式學習及擴增實境的技術的結合,以及教育遊戲內所融入的認知鷹架,可望讓學習者能透過遊戲中的模擬情境,並且模仿所扮演角色的策略擬定,針對藥物濫用的知識與處理方法進行高層次的思考。運用擴增實境技術結合桌上遊戲機制,能將遊戲式學習及教學目的結合,透過擴增實境的即時反饋、認知鷹架的建構能降低學習者的認知負荷及面對面的合作討論達到同儕協作解題能力的培養。
    本研究開發一款結合擴增實境技術的反毒教育桌上型遊戲「拯救毒域」。此桌上遊戲整合反毒教育中相關的藥物濫用問題及毒品知識,提供故事案例情境與玩家的角色扮演,並將遊戲中的鷹架提示線索以實體牌卡與擴增實境技術來呈現,並透過兩者間的配合做為認知鷹架來輔助學習者學習。本研究之研究對象為台灣北部某國中44位學習者,本研究藉由實徵分析探討學生的學習成效、心流狀態、接受度及關鍵的學習行為序列模式。
    本研究結果顯示,學習者在使用本遊戲「拯救毒域」進行學習後,學習成效顯著進步;性別差異不影響其學習成效;而心流狀態與科技接受度的各項子維度皆高於中位數;學習行為模式方面,則是發現學習者能產生與學習相關的討論,在高、低心流組別,各自有特殊的問題解決行為模式。高心流的組別呈現獨有的行為序列,在錯誤後會透過反覆的討論進行修正,透過一定程度的反思進行知識統整、模擬新的遊戲策略來達到正確的答案。此外,本研究也提出未來研究及教學實務的相關建議,供研究者參考。


    In the traditional anti-drug education with lectures or case discussions, students’ learning motivation, collaborative interaction, and the quality of learning may be limited. However, through the educational game that integrates contextual learning and augmented reality (AR) for anti-drug instruction, students could be more involved into the simulated context and play roles to learn anti-drug knowledge and related issues. With AR technology and board game mechanism, we can effectively combine game-based learning and our teaching objectives. The immediate feedback and cognitive scaffolding hints through AR can help reduce students’ cognitive load. Also, face-to-face discussions can help develop students’ collaborative problem-solving abilities.
    The study developed a board game that integrated with AR, “Saving the City of Drug.”This board game included anti-drug instructions and drug knowledge, and it provided case stories and role plays for the students. The scaffolding hints in the game were presented by game cards and AR, serving as the scaffolding to assist students’ learning. 44 junior high school students from northern Taiwan participated in this study and their learning effectiveness, flows, technology acceptance, and sequential patterns of learning behaviors were empirically analyzed.
    The results showed that learners’ learning effectiveness improved after they used the game, and their learning effectiveness was not affected by the gender factor. Moreover, the scores in all the sub-dimension of learners’ flows and their technology acceptance were above the median. Learners’ learning behavioral patterns also showed that they had discussions related to learning and different flow (high/ low) groups had different problem-solving behavioral patterns. For example, learners in the high flow group showed a unique behavioral sequence, suggesting that they would discuss and revise their answers many times after making errors. They attempted to find correct answers through reflections, knowledge integration, and the modified simulation for gaming strategies. Finally, the study also provided suggestions for the future research and teaching practices.

    摘要 1 Abstract 4 目錄 5 圖次 7 第壹章 緒論 9 第一節 研究背景與動機 9 第二節 研究目的與研究問題 12 第貳章 文獻探討 14 第一節 情境學習理論 14 第二節 遊戲式學習 16 第三節 認知鷹架理論 17 第四節 桌上遊戲的教育運用 19 第五節 AR擴增實境的教育應用 21 第六節 小結 23 第参章 研究方法 24 第一節 研究設計 24 第二節 研究對象 24 第三節 研究工具 25 第四節 研究程序 41 第五節 資料蒐集與分析 42 第肆章 研究結果 44 第一節 實驗組學習者對「拯救毒域」之學習成效、心流狀態與科技接受度 44 第二節 不同性別的學習者在學習成效、心流狀態與科技接受度的差異 46 第三節 高、低學習成效的學習者在心流狀態與科技接受度的差異 47 第四節 高、低心流狀態的學習者在學習成效與科技接受度的差異 49 第五節 相關與路徑分析 50 第六節 行為模式分析 54 第伍章 分析與討論 59 第一節 學習者對於「拯救毒域」之學習成效、心流狀態與科技接受度 59 第二節 不同性別的學習者在學習成效、心流狀態與科技接受度的差異 60 第三節 高、低學習成效的學習者在心流狀態與接受度的差異 60 第四節 高、低心流狀態的學習者在學習成效與科技接受度上的差異 61 第五節 相關與路徑分析 61 第六節 行為模式分析 61 第陸章 結論與建議 63 第一節 結論 63 第二節 建議 65 附錄一:參與遊戲同意書 76 附錄二:基本資料問卷 77 附錄三:個人遊戲經驗 78 附錄四:心流問卷 79 附錄五:接受度問卷 80 附錄六:學習成效評量 81

    王柏硯(2018)。結合情境脈絡線索作為認知鷹架的擴增實境國中生物科桌上遊戲學習成效與行為模式分析。國立臺灣科技大學應用科技研究所,未出版,台北市。
    余欣鴻(2015)。整合情境學習與認知鷹架之歷史科戰略遊戲式測驗環境之發展與評估:接受度、心流、學習成效與歷程之分析。國立臺灣科技大學應用科技研究所,未出版,台北市。
    呂彥承(2017)。運用認知鷹架與模擬操作之實驗室密室脫逃遊戲之設計與評估: 以化學滴定實驗為例。國立臺灣科技大學應用科技研究所,未出版,台北市。
    陳冠廷(2017)。運用合作問題解決與鷹架教學策略之擴增實境科學史教育桌遊之設計與評估。國立臺灣科技大學應用科技研究所,未出版,台北市。
    Abrahamson, D., & Kapur, M. (2018). Reinventing discovery learning: a field-wide research program. Instructional Science, 46(1), 1-10.
    Amory, A., & Seagram, R. (2003). Educational game models: Conceptualization and evaluation. South African Journal of Higher Education, 17(2), 206–217.
    Alexander M., Whittam,Whitney Chow.(2017).An educational board game for learning and teaching burn care: A preliminary evaluation.Scars, Burns & Healing. (Vol.3.p1-5).
    Alessi, S. M., & Trollip, S. R. (2000). Multimedia for learning: Methods and development. Allyn & Bacon, Inc.
    Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current directions in psychological science, 11(5), 181-185.
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
    Bayir, E. (2014). Developing and Playing Chemistry Games To Learn about Elements, Compounds, and the Periodic Table: Elemental Periodica, Compoundica, and Groupica. Journal of Chemical Education, 91 (4), 531–535.
    Bransford, J. D., Brown, A., & Cocking, R. (1999). How people learn: Mind, brain, experience, and school. Washington, DC: National Research Council.
    Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational researcher, 18(1), 32-42.
    Burguillo, J. C. (2010). Using game theory and competition-based learning to stimulate student motivation and performance. Computers & Education, 55(2), 566-575.
    Chang, K. E., Chang, C. T., Hou, H. T., Sung, Y. T., Chao, H. L., & Lee, C. M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & Education, 71, 185-197.
    Cheng,P.H. , Yeh,T., Tsai,J.C. , Chan,C.E(2019).Development of an Issue-Situation-Based Board Game: A Systemic Learning Environment for Water Resource Adaptation Education.Sustainability 2019,11(5),13-41.
    Charsky, D., & Ressler, W. (2011). “Games are made for fun”: Lessons on the effects of concept maps in the classroom use of computer games. Computers & Education, 56(3), 604-615.
    Chen, C. H., Law, V., & Chen, W. Y. (2018). The effects of peer competition-based science learning game on secondary students’ performance, achievement goals, and perceived ability. Interactive Learning Environments, 26(2), 235-244.
    Cheng, K. H., & Tsai, C. C. (2014). Children and parents' reading of an augmented reality picture book: Analyses of behavioral patterns and cognitive attainment. Computers & Education, 72, 302-312.
    Clarke, S. G., & Haworth, J. T. (1994). ‘Flow’experience in the daily lives of sixth‐form college students. British Journal of Psychology, 85(4), 511-523.
    Coffland, D. A., & Xie, Y. (2015). The 21st century mathematics curriculum: A Technology enhanced experience. In Emerging Technologies for STEAM Education (pp. 311-329). Springer, Cham.
    Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. Knowing, learning, and instruction: Essays in honor of Robert Glaser, 18, 32-42.
    Csikszentmihalyi, M. (1990). Flow. The Psychology of Optimal Experience. New York (HarperPerennial) 1990.
    Csikszentmihalyi, M., & Csikszentmihalyi, I. (1975). Beyond boredom and anxiety (Vol. 721). San Francisco: Jossey-Bass.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
    Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research.(Vol.12.No.1.pp150-158).
    Ge Jin., Manghui Tu., Tae-Hoon Kim., Justin Heffron.,Jonathan White (2018).Evaluation of Game-Based Learning in Cybersecurity Education for High School Students.Journal of Education and Learningto the Theory of Planned Behavior
    Hou, H. T. (2012). Exploring the behavioral patterns of learners in an educationalmassively multiple online role-playing game (MMORPG). Computers & Education, 58(4), 1225-1233.
    Hou, H. T. (2015). Integrating cluster and sequential analysis to explore learners’ flow and behavioral patterns in a simulation game with situated-learning context for science courses: A video-based process exploration. Computers in human behavior, 48, 424-435.
    Hou, H. T., & Chou, Y. S. (2012). Exploring the technology acceptance and flow state of a chamber escape game-Escape The Lab© for learning electromagnet concept. ICCE 2012, 38.
    Hou, H. T., & Li, M. C. (2014). Evaluating multiple aspects of a digital educational problem-solving-based adventure game. Computers in Human Behavior, 30, 29-38.
    Hou, H. T., Wu, Y. S., & Chou, Y. S. (2014, May). How technology acceptance affects flow antecedent and flow experience in a simulation-based science education game: A preliminary path analysis. In Paper presented at the global Chinese conference on computers in education (GCCCE 2014), Shanghai,China.
    Hou, H. T.,& Lin, Y. H. (2015). The Game-based Learning Activity Integrating Board Game and Mobile Online Searching Tasks for History Learning. poster presented at the 23th International Conference on Computers in Education (ICCE2015), Hangzhou,China, 11/30-12/4, 2015.
    Hsieh, Y. H., Lin, Y. C., & Hou, H. T. (2016). Exploring the role of flow experience, learning performance and potential behavior clusters in elementary students' game-based learning. Interactive Learning Environments, 24(1), 178-193.
    Hsieh, Y. H., Yi-Chun, L., & Hou, H. T. (2015). Exploring elementary-school students' engagement patterns in a game-based learning environment. Journal of Educational Technology & Society, 18(2), 336.
    Hussain, S. Y. B. S., Hoe, T. W., & Idris, M. Z. B. (2017, May). Digital game based learning: A new method in teaching and learning mathematics. In AIP Conference Proceedings (Vol. 1847, No. 1, p. 030016). AIP Publishing.
    Hwang, G. J., Wu, P. H., & Chen, C. C. (2012). An online game approach for improving students’ learning performance in web-based problem-solving activities. Computers & Education, 59(4), 1246-1256.
    Hwang, G. J., Wu, P. H., Chen, C. C., & Tu, N. T. (2016). Effects of an augmented reality-based educational game on students' learning achievements and attitudes in real-world observations. Interactive Learning Environments, 24(8), 1895-1906.
    Jackson, S. & Marsh, H. (1996). Development and validation of a scale to measure optimal experience: The flow state scale. Journal of Sport & Exercise Psychology, 18, 17–35.
    Jensen, E. (2001). Arts with the brain in mind. Alexandria, VA: Association for Supervision and Curriculum Development.
    Kaufmann, H., & Schmalstieg, D. (2002, July). Mathematics and geometry education with collaborative augmented reality. In ACM SIGGRAPH 2002 conference abstracts and applications(pp. 37-41). ACM.
    Karin K. Quick., Christine M. Blue. (2019).Using Situated Learning Theory to Build an Interactive Learning Environment to Foster Dental Students’ Professionalism: An Ignite Project. Journal of Dental Education.341.
    Kiili, K. (2006). Evaluations of an experiential gaming model. Human Technology: An Interdisciplinary Journal on Humans in ICT Environments.
    Kiili, K. (2007). Foundation for problem‐based gaming. British journal of educational technology, 38(3), 394-404.
    Kim, B., Park, H., & Baek, Y. (2009). Not just fun, but serious strategies: Using meta-cognitive strategies in game-based learning. Computers & Education, 52(4), 800-810.
    Kim, H., & Ke, F. (2017). Effects of game-based learning in an OpenSim-supported virtual environment on mathematical performance. Interactive Learning Environments, 25(4), 543-557.
    Kim, S., & Chang, M. (2010). Computer games for the math achievement of diverse students. Journal of Educational Technology & Society, 13(3), 224.
    Lindstedt, A., & Kiili, K. (2017, May). Evaluating playing experience and adoption of a math learning game. In Proceedings of the 1st International GamiFIN Conference (pp. 39-46).
    Lunce, L. M. (2006). Simulations: Bringing the benefits of situated learning to the traditional classroom. Journal of Applied Educational Technology, 3(1), 37-45.
    Michael G. Morris, Viswanath Venkatesh, and Phillip L. Ackerman.(2005,February). Gender and Age Differences in Employee Decisions About New Technology: An Extension to the Theory of Planned Behavior. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT.(VOL.52, NO. 1).
    M.W. Rivera ,D.P. Sheer ,A.J. Miller.(2013,June).Computer‐Aided Negotiations of Water Disputes: An Interdisciplinary Role‐Playing Course. The Journal of the American Water Resources Association. (VOL.49),700-714.
    McLaren, B., Farzan, R., Adams, D., Mayer, R., & Forlizzi, J. (2017, June). Uncovering gender and problem difficulty effects in learning with an educational game.International Conference on Artificial Intelligence in Education (pp. 540-543).
    McLaren, B. M., Adams, D. M., Mayer, R. E., & Forlizzi, J. (2018). A computer-based game that promotes mathematics learning more than a conventional approach. In Gamification in Education: Breakthroughs in Research and Practice (pp. 415-437). IGI Global.
    Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
    Murat Akçayır., G€okçe Akçayır.,Hüseyin Miraç Pektas.,Mehmet Akif Ocak.(2016).Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories.59(4),146-156.
    Moomaw, S. (2015). Assessing the difficulty level of math board games for young children. Journal of Research in Childhood Education, 29(4), 492-509.Computers in Human Behavior.334-342.
    Norman, D. (2014). Things that make us smart: Defending human attributes in the age of the machine. Diversion Books.
    Novak, T. P., & Hoffman, D. L. (1997). Measuring the flow experience among web users. Interval Research Corporation, 31(1), 1-35.
    Nishita M., Muneeb Ilyas., Nan Zhang., Amit Sharma.(2017).Online, game-based education for melanoma recognition: A pilot study.Contents lists available at ScienceDirect Patient Education and Counseling.
    Organisation for Economic Co-operation and Development (OECD). (2016). PISA 2015 results in focus.Educational Technology, (VOL56.NO.3,p6-11)
    Palmer, P. J. (2017). The courage to teach: Exploring the inner landscape of a teacher's life. John Wiley & Sons.
    Park, E., Baek, S., Ohm, J., & Chang, H. J. (2014). Determinants of player acceptance of mobile social network games: An application of extended technology acceptance model. Telematics and Informatics, 31(1), 3-15.
    Partnership for 21st Century Skills (2009). 21st Century skills, education and competitiveness: A resource and policy guide. Tuscon, AZ: Author.
    Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. The journal of the learning sciences, 13(3), 423-451.
    Cheng., Yeh.T. Tsai., Lin.,(2019).Development of an Issue-Situation-Based Board Game: A Systemic Learning Environment for Water Resource Adaptation Education.Sustainability 2019,11(5),1341.
    Pinto, D., Mosquera, J., Gonzalez, C., Tobar-Muñoz, H., Fabregat, R., & Baldiris, S. (2017). Augmented Reality Board Game for supporting learning and motivation in an indigenous community.
    Prensky, M. (2003). Digital game-based learning. Computers in Entertainment (CIE), 1(1), 21-21.
    Puntambekar, S., & Kolodner, J. L. (2005). Toward implementing distributed scaffolding: Helping students learn science from design. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 42(2), 185-217.
    Radu, I., McCarthy, B., & Kao, Y. (2016, March). Discovering educational augmented reality math applications by prototyping with elementary-school teachers. In Virtual Reality (VR), 2016 IEEE (pp. 271-272). IEEE.
    Rodríguez-Ardura, I., Meseguer-Artola, A. (2016). What leads people to keep on e-learning? An empirical analysis of users' experiences and their effects on continuance intention. Interactive Learning Environments, 24(6), 1030-1053.
    Rubenstein, C. D., & Schubert, C. F. (2017). Student andfaculty perceptions of iPad integration in a prelicensure program. Nurse Educator, 42(2), 85–90.
    Saye, J. W., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in multimedia-supported learning environments. Educational Technology Research and Development, 50(3), 77-96.
    Jung., Ko.W.,(2019).A Research for Functional Game based on AR Smartcare : Focusing on infant and child safety education.Journal of Korea Game Society,19(1): 25-36.
    Shute, V. J. (2008). Focus on formative feedback. Review of educational research, 78(1), 153-189.
    Skillen, J., Berner, V. D., & Seitz-Stein, K. (2018). The rule counts! Acquisition of mathematical competencies with a number board game. The Journal of Educational Research, 111(5), 554-563.
    Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370.
    Stone, C. A. (1998). The metaphor of scaffolding: Its utility for the field of learning disabilities. Journal of learning disabilities, 31(4), 344-364.
    Tsai, M. J., Huang, L. J., Hou, H. T., Hsu, C. Y., & Chiou, G. L. (2016). Visual behavior, flow and achievement in game-based learning. Computers & Education, 98, 115-129.
    Vygotsky, L. (1978). Interaction between learning and development. Readings on the development of children, 23(3), 34-41.
    Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17(2), 89-100.
    Yang, K. H., Chu, H. C., & Chiang, L. Y. (2018). Effects of a Progressive Prompting-based Educational Game on Second Graders' Mathematics Learning Performance and Behavioral Patterns. Journal of Educational Technology & Society, 21(2), 322-334.

    無法下載圖示 全文公開日期 2024/12/29 (校內網路)
    全文公開日期 2024/12/29 (校外網路)
    全文公開日期 2024/12/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE