簡易檢索 / 詳目顯示

研究生: 郭麟徵
Lin-Jheng Guo
論文名稱: 多層石墨烯於平面雙極性接面電晶體之製備及其應用
Fabrication and application of multi-layer graphene lateral bipolar junction transistor
指導教授: 李奎毅
Kuei-Yi Lee 
趙良君
Liang -Chiun Chao
口試委員: 李奎毅
Kuei-Yi Lee 
趙良君
Liang -Chiun Chao
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 88
中文關鍵詞: 石墨烯氮電漿摻雜電化學摻雜雙極性接面電晶體
外文關鍵詞: Graphene, Nitrogen plasma treatment, Electrochemistry treatment, Bipolar junction transistor
相關次數: 點閱:263下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

石墨烯具有高電子遷移率, 高導電性及高穿透性等優越的特性. 石墨烯會吸附大氣中的氧原子與水氣表現出 p-type 的特性. 透過氮電漿摻雜以及電化學摻雜可以對石墨烯進行 n-type 的摻雜. 藉由遮罩定義出 p-type 區域後對摻雜區進行摻雜, 我們製作出平面雙極性接面電晶體, 並對其進行電性分析及應用於開關電路中. 氮電漿實驗中的會對石墨烯施加不同的負偏壓, 使得氮電漿對石墨烯進行不同程度的摻雜. 石墨烯電晶體在狄拉克點從正區 (+50 V) 逐漸偏移至負區 (-60 V), 成功使石墨烯轉變成 n-type 半導體. 隨著負偏壓的改變氮含量從 1.4% 增加至 2.9%. 其中 Pyrrolic-N 有明顯地增加,是石墨烯轉變成n型半導體的關鍵. 為了在氮電漿摻雜地基礎上更進一步提高氮原子的濃度, 我們將經過氮電漿摻雜的石墨烯進行電化學摻雜. 藉由電化學方式進行摻雜, 也成功使石墨烯電晶體的狄拉克點從原本的 -60 V 逐漸偏移至 -90 V. 隨著電漿處理的時間不同, 氮含量從原本的 2.9% 增加至 5.6%. 透過不同的參數組合, 雙極性接面電晶體的電流增益從 1 增加至 3.6. 未來若能繼續將石墨烯中的氮含量提高, 可望能製作出增益更大以及體積更小的雙極性接面電晶體.


Graphene has extraordinary properties, such as high electron mobility, high electrical conductivity and high light transmittance. The absorption of oxygen and water vapor in air lead graphene exhibits p-type behaviors. The nitrogen plasma treatment and electrochemistry treatment were used to introduce nitrogen atoms to obtain n-type graphene. The lateral graphene–based bipolar junction transistor was formed after nitrogen plasma treatment and electrochemistry treatment with the mask defining the p-type region. The treatment process was conducted with nitrogen plasma under radio frequency (RF) power of 50 W at different potential voltages to inject different concentrations of electrons with graphene. The current-voltage curve shows the Dirac point shifted from a positive value (+75 V) to a negative value (-55 V). The nitrogen content increased from 1.4% to 2.9% with different potential voltages. Graphene transforming to n-type was due to the increase of pyrrolic content. After electrochemistry treatment, the current-voltage curve shows the Dirac point shifted from -60 V to -90 V. The nitrogen content increased from 2.9% to 5.6% with different process times. Nitrogen content increased indicated the more electrons were doped into graphene, therefore current gain (β) increased from 1 to 3.6. In the future, this device could be more suited for applying in products in the case of nitrogen content increased.

中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX Chapter 1 緒論 1 1.1. 石墨烯 1 1.1.1 發展歷史 1 1.1.2 晶體構造 2 1.1.3 石墨烯的能帶結構 4 1.1.4 石墨烯的聲子能帶 5 1.1.5 石墨烯的拉曼分析 6 1.1.6 石墨烯的製備 8 1.2. P-type 石墨烯 11 1.3. N-type 石墨烯 12 1.3.1 場效應電晶體 15 1.3.2 背景 15 1.3.3 工作原理 15 1.3.4 石墨烯電晶體 16 1.3.5 上閘極電晶體 17 1.4. pn 接面二極體 19 1.4.1 工作原理 20 1.4.2 石墨烯同質接面二極體 21 1.5. 雙極性接面電晶體 22 1.5.1 工作原理 23 1.6. 研究背景與動機 25 Chapter 2 實驗方法與設備 26 2.1. 實驗流程圖 26 2.2. 製造過程 27 2.2.1 基板之準備工作 27 2.2.2 純石墨烯 27 2.2.3 轉印石墨烯 31 2.2.4 黃光微影技術 31 2.2.5 氮電漿摻雜 33 2.2.6 電化學摻雜 35 2.3. 分析量測儀器 36 2.3.1 高解析度穿透式電子顯微鏡 (JEOL 2000FXII) 36 2.3.2 拉曼光譜儀 37 2.3.3 X射線光電子能譜儀 (VG Scientific Theta Probe) 38 2.4. 電性量測 39 2.4.1 狄拉克點量測 39 2.4.2 pn 二極體量測 40 2.4.3 雙極性接面電晶體量測 42 2.5. 開關電路 43 Chapter 3 結果與討論 44 3.1. 穿透式顯微鏡影像圖 44 3.2. 拉曼光譜圖 45 3.2.1 氮摻雜之拉曼光譜 45 3.2.2 電化學摻雜之拉曼光譜 49 3.3. 場效電晶體量測 51 3.3.1 氮摻雜之電晶體量測 51 3.3.2 電化學摻雜之電晶體量測 53 3.4. X射線光電子能譜分析 55 3.4.1 氮摻雜 XPS 訊號分析 55 3.4.2 電化學摻雜之 XPS 訊號分析 59 3.5. 二極體特性 61 3.5.1 氮摻雜二極體特性分析 61 3.5.2 電化學摻雜二極體特性分析 63 3.6. 雙極性接面電晶體特性 65 3.7. 開關電路 70 Chapter 4 結論 71 參考文獻 72

[1] M. I. Katsnelson and K. S. Novoselov, “Graphene: new bridge between condensed matter physics and quantum electrodynamics,” Sol. Commun., vol. 143, pp. 3, 2007.
[2] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, pp. 183-191, 2007.
[3] M. I. Katsnelson, “Graphene: carbon in two dimensions,” Mater. Today, vol. 10, pp. 20, 2007.
[4] S. V. Morosov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett., vol. 100, pp. 016602-1-016602-4, 2008.
[5] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett., vol. 9, pp. 4359-4363, 2009.
[6] E. Fitzer, K. H. Kochling, H. P. Boehm, and H. Marsh, “Recommended terminology for the description of carbon as a solid,” Pure Appl. Chem., vol. 67, pp. 473, 1995.
[7] J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” J. Phys.-Condens. Matter, vol. 20, pp. 27, 2008.
[8] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, pp. 109-162, 2009.
[9] K. F. Mak, J. Shan, and T. F. Heinz, “Electronic structure of few-layer graphene: experimental demonstration of strong dependence on stacking sequence,” Phys. Rev. Lett., vol. 104, pp. 4, 2010.
[10] S. Latil and L. Henrard, “Charge carriers in few-layer graphene films,” Phys. Rev. Lett., vol. 97, pp. 4, 2006.
[11] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, pp. 622-634, 1947.
[12] P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett., vol. 10, pp. 4285-4294, 2010.
[13] T. Fang, A. Konar, H. L. Xing, and D. Jena, “Carrier statistics and quantum capacitance of graphene sheets and ribbons,” Appl. Phys. Lett., vol. 91, pp. 3, 2007.
[14] G. H. Lu, K. H. Yu, Z. H. Wen, and J. H. Chen, “Semiconducting graphene: converting graphene from semimetal to semiconductor,” Nanoscale, vol. 5, pp. 1353-1368, 2013.
[15] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep.-Rev. Sec. Phys. Lett., vol. 473, pp. 51-87, 2009.
[16] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejon, “Phonon dispersion in graphite,” Phys. Rev. Lett., vol. 92, pp. 4, 2004.
[17] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phy. Rev. Lett., vol. 97, pp. 187401, 2006.
[18] L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. M.-Paniago, and M. A. Pimenta, “General equation for the determination of the crystallite size la of nanographite by Raman spectroscopy,” Appl. Phy. Lett., vol. 88, pp. 163106, 2006.
[19] P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett., vol. 91, pp. 063124-1-063124-3, 2007.
[20] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, and M. L. Sadowski, “Epitaxial graphene,” Solid State Commun., vol. 143, pp. 92-100, 2007.
[21] J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” J. Phys.: Condens. Matter, vol. 20, pp. 323202-323228, 2008.
[22] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nature Nanotech., vol. 3, pp. 538-542, 2008.
[23] G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat. Nanotechnol., vol. 3, pp. 270-274, 2008.
[24] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett., vol. 9 (1), pp. 30-35, 2009.
[25] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 457, pp. 706-710, 2009.
[26] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators,” Appl. Phys. Lett., vol. 93, pp. 113103-1-113103-3, 2008.
[27] X. Li, W. Cai, J. Ana, S. Kimb, J. Nahb, D. Yanga, R. Piner, A. Velamakannia, I. Junga, E. Tutucb, S. K. Banerjee, L. Colomboc, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol. 324, pp. 1312-1314, 2009.
[28] A. Kumar and C. H. Lee, “Synthesis and biomedical applications of graphene: present and future trends,” Adv. Graphene Sci., pp. 55-75, 2013.
[29] L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, and C. N. R. Rao, “Synthesis, structure, and properties of boron‐ and nitrogen‐doped graphene,” Adv. Mater., vol. 21, pp. 1-5, 2009.
[30] M. Acik and Y. J. Chabal, “A review on thermal exfoliation of graphene oxide,” J. Mater. Sci. vol. 2, pp. 101-112, 2013.
[31] V. Barone, O. Hod, and G. E. Scuseria, “Electronic structure and stability of semiconducting graphene nanoribbons,” Nano Lett., vol. 6, pp. 2748-2754, 2006.
[32] J. S. Park, S. M. Cho, W. J. Kim, J. Park, and P. J. Yoo, “Fabrication of graphene thin films based on layer-by-layer self-assembly of functionalized graphene nanosheets,” ACS Appl. Mater. Interfaces, vol. 3, pp. 360-368, 2011.
[33] Y. F. Lu, S. T. Lo, J. C. Lin, W. Zhang, J. Y. Lu, F. H. Liu, C. M. Tseng, Y. H. Lee, C. T. Liang, and L. J. Li, “Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport,” ACS Nano., vol. 7 (8), pp. 6522–6532, 2013.
[34] H. B. Wang, T. Maiyalagan, and X. Wang, “Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications,” ACS Catal., vol. 2, pp. 781-794, 2012.
[35] W. Zhao, O. Hofert, K. Gotterbarm, J. F. Zhu, C. Papp, and H. P. Steinruck, “Production of nitrogen-doped graphene by low-energy nitrogen implantation,” J. Phys. Chem. C, vol. 116, pp. 5062-5066, 2012.
[36] M. Rybin, A. Pereyaslavtsev, T. Vasilieva, V. Myasnikov, I. Sokolov, A. Pavlova, E. Obraztsova, A. Khomich, V. Ralchenko, and E. Obraztsova, “Efficient nitrogen doping of graphene by plasma treatment,” Carbon, vol. 96, pp. 196-202, 2016.
[37] Y. C. Lin, C. Y. Lin, and P. W. Chiu, “Controllable graphene N-doping with ammonia plasma,” Appl. Phys. Lett., vol. 96, pp. 133110, 2010.
[38] Z. Jin, J. Yao, C. Kittrell, and J. M. Tour, “Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets,” ACS Nano, vol. 5, pp. 4112-4117, 2011.
[39] B. D. Guo, Q. A. Liu, E. D. Chen, H. W. Zhu, L. A. Fang, and J. R. Gong, “Controllable N-doping of graphene,” Nano Lett., vol. 10, pp. 4975-4980, 2010.
[40] L. V. Nang, N. V. Duy, N. D. Hoa, and N. V. Hieu, “Nitrogen-doped graphene synthesized from a single liquid precursor for a field effect transistor,” J. Electron. Mater., vol. 45, pp. 839-845, 2016.
[41] O. Heil, “Improvements in or relating to electrical amplifiers and other control arrangements and devices,” British Patent, vol. 439, pp. 10-14, 1935.
[42] L. J. Edgar, “Method and apparatus for controlling electric currents,” ed: Google Patents, 1930.
[43] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004.
[44] B. Guo, L. Fang, B. Zhang, and J. R. Gong, “Graphene doping: a review,” Insciences J., vol. 1(2), pp. 80-89, 2011.
[45] Y. Liu, G. Zhang, H. Zhou, Z. Li, R. Cheng, Y. Xu, V. Gambin, Y. Huang, and X. Duan, “Ambipolar barristors for reconfigurable logic circuits,” Nano Lett., vol. 17, pp. 1448-1454, 2017.
[46] M. Riordan and L. Hoddeson, Crystal fire: the invention of the transistor and the birth of the information age: WW Norton & Company, 1997.
[47] J. R. Hook and H. E. Hall, “Orbital dynamics of 3He-A in the presence of a heat flow and a magnetic field,” Phys. C: Solid State Phys., vol. 12, pp. 783-800, 1979.
[48] C. H. Lee, G. H. Lee, A. M. van der Zande, W. C. Chen, Y. L. Li, M. Y. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p–n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol., vol. 9, pp. 676-681, 2014.
[49] Y. J. Gong, J. H. Lin, X. L. Wang, G. Shi, S. D. Lei, Z. Lin, X. L. Zou, G. L. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater., vol. 13, pp. 1135-1142, 2014.
[50] S. K. Hazra and S. Basu, "Hydrogen sensitivity of Zno p-n homojunctions," Sens. Actuator B-Chem., vol. 117, pp. 177-182, 2006.
[51] S. M. Sze, Semiconductor Devices: Physics and Technology: John Wiley & Sons, 2008.
[52] J. Cho, D. Jung, Y. Kim, W. Song, P. D. Adhikari, K.-S. An, and C.-Y. Park, “Fabrication of graphene p-n junction field effect transistors on patterned self-assembled monolayers/substrate,” Appl. Sci. Conv. Technol., Vol. 24(3), pp. 53-59, 2015.
[53] A. Pospischil, M. M. Furchi, and T. Mueller, “Solar energy conversion and light emission in an atomic monolayer p-n diode,” Nature Nanotechnol., vol. 9, pp. 257-261, 2014.
[54] S. Kim and S. Lee, “A transistor based on 2D material and silicon junction,” J. Korean Phys. Soc., vol. 71, pp. 92-100, 2017.
[55] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature, vol. 446, pp. 60-63, 2007.
[56] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single- and few-layer graphene,” Nano Lett., vol. 7, pp. 238-242, 2007.
[57] M. Cui, S. Ren, H. Zhao, Q. Xue, and L. Wang, “Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating,” Chem. Eng. J., vol. 335, pp. 255-266, 2018.
[58] Y. Y. Shao, S. Zhang, M. H. Engelhard, G. S. Li, G. C. Shao, Y. Wang, J. Liu, I. A. Aksay, and Y. H. Lin, “Nitrogen-doped graphene and its electrochemical applications,” J. Mater. Chem., vol. 20, pp. 7491-7496, 2010.
[59] H. Huang, Y. Xia, X. Y. Tao, J. Du, J. W. Fang, Y. P. Gan, and W. K. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation-expansion-microexplosion mechanism,” J. Mater. Chem., vol. 22, pp. 10452-10456, 2012.
[60] W. J. Su, H. C. Chang, S. I. Honda, P. H. Lin, Y. S. Huang, and K. Y. Lee, "Nitrogen plasma-treated multilayer graphene-based field effect transistor fabrication and electronic characteristics," Physica E: Low-dimensional Systems and Nanostructures, 2017.
[61] Z. Hu, Y. Huang, C. Zhang, L. Liu, J. Li, and Y. Wang, “Graphene–polydopamine–C60 nanohybrid: an efficient protective agent for NO-induced cytotoxicity in rat pheochromocytoma cells,” J. Mater. Chem. B, vol. 2, pp. 8587-8597, 2014.
[62] I. Kaminska, M. R. Das, Y. Coffinier, J. N. Jonsson, J. Sobczak, P. Woisel, J. Lyskawa, M. Opallo, R. Boukherroub, and S. Szunerits, “Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step,” ACS Appl. Mater. Interface, vol. 4, pp. 1016-1020, 2012.
[63] P. Rani and V. K. Jindal, "Designing band gap of graphene by B and N dopant atoms," RSC Adv., vol. 3, pp. 802-812, 2013.
[64] Z. X. Wang, F. Wang, L. Yin, Y. Huang, K. Xu, F. M. Wang, X. Y. Zhan, and J. He, "Electrostatically tunable lateral MoTe2 p-n junction for use in high-performance optoelectronics," Nanoscale, vol. 8, pp. 13245-13250, 2016.

QR CODE