簡易檢索 / 詳目顯示

研究生: 許晉通
Chin-Tung Hsu
論文名稱: 銅-鋅-錫 靶材濺鍍製備效率3.7 % 之薄膜太陽能電池及其分析
Preparation, property, and device performance of 3.7 % efficiency thin-film solar cell deposited with Cu-Zn-Sn targets
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 何清華
Ching-Hwa Ho
薛人愷
Ren-Kai Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 147
中文關鍵詞: 薄膜太陽能電池硒化銅鋅錫濺鍍法
外文關鍵詞: solar cell, CZTSe, sputtering
相關次數: 點閱:255下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於能源危機的出現,使得再生能源備受全世界矚目。其中太陽能電池為最具有潛力能取代石化燃料的絕佳選擇之一。在此領域裡,硒化銅銦鎵薄膜太陽能電池已經被研究並使用一段時間了。然而,稀有元素銦和鎵的使用,造成其成本偏高,因而發展出低成本的硒化銅鋅錫嘗試將其取而代之。
    本實驗利用濺鍍法,成功製備出CZTSe薄膜太陽能電池。吸收層薄膜的製備是利用DC真空濺鍍系統,以不同組成比例之銅-鋅-錫靶材,濺鍍CZT前驅物於鍍鉬的鈉玻璃基板上,接著再進行不同硒化條件的退火而製得。薄膜的特性藉由X光繞射分析儀(XRD)、場發射掃描式電子顯微鏡(FE-SEM)、能量散射光譜儀(EDS)與霍爾量測等來分析。接著將薄膜製備成太陽能電池元件,其堆疊方式如下,鈉玻璃/Mo (DC, 700 nm)/CZTSe (DC, 1 μm)/CdS (CBD, 70 nm)/i-ZnO (RF, 50 nm)/ITO (RF, 400 nm)/銀。最後利用擬太陽能光測試儀器測試其電池之光電轉換效率。
    實驗結果顯示,二階段600 ℃硒化退火1小時後所製備的CZTSe薄膜,其晶粒最佳尺寸約為2 μm~6 μm,且經由XRD及EDS分析可以知道此薄膜為單相CZTSe結構,並具有Cu0.9ZnSnSe2組成比例。以靶材A製得之元件,組成嚴重缺銅,只有得到1.61 %之轉換效率。

    靶材B製得之元件,組成稍微富銅,得到2.59 %之轉換效率。靶材C製得之元件,遷移率為38.2 cm2V-1s-1且導電度為12.79 Ω-1cm-1,得到3.72 %之最佳轉換效率。靶材D製得之元件,載子濃度較高,為9.63×1019 cm-3,轉換效率為2.38 %。


    Confronting with the problem of energy crisis, the renewable resources have received lots of attention from all over the world. Solar cell is one of the best choices which show a great deal of promise in replacing fossil fuels. In this field, CIGSe thin-film solar cells have been studied and used for a period of time. However, the rare elements, such as indium and gallium, used in CIGSe made its cost get increased. Therefore, low cost Cu2ZnSnSe4 is emerging to try taking the place of it.
    In this study, we successfully fabricated CZTSe thin-film solar cell devices by sputtering method. The absorption layers were grown by DC sputtering in vacuum system using Cu-Zn-Sn targets with different compositions to deposit CZT precursors on Mo-coated soda-lime glass (SLG) substrates followed by different selenization conditions. The characterizations of thin films were analyzed by X-ray diffractometer (XRD), field-emission scanning electron microscope (FE-SEM) epuipped with an energy dispersive X-ray spectrometer (EDS), and Hall measurement. Solar cells were then fabricated with the device stacks consisting of the following: SLG/Mo (DC, 700nm)/CZTSe (DC, 1μm)/CdS (CBD, 70nm)/i-ZnO (RF, 50nm)/ITO(RF, 400nm)/Ag
    The performance of the device was then evaluated under the standard AM 1.5 illumination.
    The results showed that CZTSe thin films which were made by a two-step selenization process at 600 ℃for 1 hr had grain size of 2 μm~6 μm. XRD and EDS analyses demonstrated that the films were single phase with the close component of Cu0.9ZnSnSe2.
    Device made by target A contained Cu-poor CZTSe as an absorber. This device only got 1.61 % conversion efficiency. Device made by target B had the slightly Cu-rich component and it reached 2.95 % conversion efficiency. Device made by target C had the mobility of 38.2 cm2V-1s-1 and conductivity of 12.79 Ω-1cm-1 for its absorber layer. Its electrical properties are suitable for solar cells, which leads to the best conversion efficiency of 3.72 %. Device made by target D had the absorber with high carrier concentration of 9.63×1019 cm-3 and had its lower conversion efficiency of 2.38 % than that from target C.

    第一章 緒論 1 1-1 前言 1 1-2 太陽能電池的基本介紹 2 1-3 太陽能電池的種類及發展 2 1-4 各種薄膜太陽能電池 4 1-4-1 矽薄膜太陽能電池(Thin film silicon solar cell) 4 1-4-2 非晶矽薄膜太陽能電池(Amorphous silicon solar cell) 4 1-4-3 碲化鎘薄膜太陽能電池(Cadmium Telluride thin 5 1-4-4 硒化銅銦鎵薄膜太陽能電池 (Copper Indium Gallium Diselenide solar cell) 6 1-5 研究動機與目的 7 第二章 基礎理論與文獻回顧 9 2-1 太陽能電池工作原理 9 2-1-1 p-n接合二極體 9 2-1-2 光伏特效應(Photovoltaic effect ) 10 2-1-3 太陽能電池的效率 11 2-2 CZTS薄膜太陽能電池基本構造 13 2-2-1 鈉玻璃基板 (Soda-lime glass) 14 2-2-2 鉬金屬背電極(Mo back contact) 16 2-2-3 主吸收層(Absorber layer) 17 2-2-4 緩衝層 (Buffer layer) 44 2-2-5 窗口層 (Window layer) 44 2-2-6 上電極 44 第三章 實驗步驟 45 3-1 實驗設備說明 45 3-1-1 真空熱壓機 45 3-1-2 直流磁控濺鍍系統(DC magnetron sputtering system) 45 3-1-3 射頻磁控濺鍍系統(RF magnetron sputtering system) 46 3-1-4 高溫真空管型爐 47 3-1-5 化學浴相關儀器設備 48 3-2 實驗藥品和氣體選擇 51 3-2-1 藥品 51 3-2-2 氣體 52 3-3 實驗流程 53 3-3-1 基板的選擇與清洗 53 3-3-2 Mo底電極的製備 54 3-3-3 吸收層靶材製備 54 3-3-4 CZT靶材濺鍍 54 3-3-5 薄膜硒化退火 55 3-3-6 緩衝層製備 55 3-3-7 窗口層製備 55 3-3-8 透明導電層製備 56 3-3-9 上電極製備 56 3-4 實驗參數 62 3-5 分析儀器 65 3-5-1 X光繞射分析儀 (X-ray Diffractometer,XRD) 65 3-5-2 場發射掃描式電子顯微鏡 (Field Emission of Scanning Electron Microscope,FE-SEM) 65 3-5-3 霍爾量測 (Hall Effect Measurement System) 66 3-5-4 擬太陽能光測試儀 (Standard AM 1.5 illumination meter) 66 第四章 結果與討論 67 4-1 CZTSe薄膜SEM表面形貌觀察與EDS成分分析 67 4-2 XRD結構性質分析 97 4-3 霍爾量測 (Hall measurement) 107 4-4 電池的製備與分析 120 第五章 結論 128 參考文獻……………………………………………………………………………130

    [1]京都議定書
    [2] David Lidgate, “Green energy”, Engineering science and education journal, pp. 221-227 (1992)
    [3] Adams, W.G. and R.E., Day. Proc. R. Soc., A25: pp. 113 (1877)
    [4]顧鴻濤,「太陽電池元件導論-材料、元件、製程、系統」,全威圖書股份有限公司,2009。
    [5]莊嘉琛,「太陽能工程-太陽電池篇」,全華科技圖書股份有限公司,2007。
    [6]柯志昇,「綠色能源當道-全球太陽能電池市場與產業發展趨勢分析」,2008。
    [7] Sang Hyun Park, Jun-Sik Cho, Kyung Hoon Yoon, “Photo-induced degradation of a-Si:H thin film depending on electrical load conditions”, Electronic Materials Letters December, Volume 7, Issue 4, pp. 323-325 (2011)
    [8] Xuanzhi Wu, “High-efficiency polycrystalline CdTe thin-film solar cells”, Solar Energy 77, 803–814 (2004)
    [9] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20 %”, Prog. Photovolt: Res. Appl. 19, pp. 894–897 (2011)
    [10]林明獻,「太陽電池技術入門」,全華科技圖書股份有限公司,2008。
    [11] S.O. Kasap, Optoelectronics (Prentice Hall),1999.
    [12]蔡進譯,「超高效率太陽能電池-從愛因斯坦的光電效應談起」,物理雙月刊 27,701 (2005).
    [13] C.Y. Shi, Yun Sun, Qing He, F.Y. Li, J.C. Zhao.“Cu(In,Ga)Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers”, Solar Energy Materials & Solar Cells 93 pp.654-656 (2009).
    [14] Yan, J. H., Kim, M.S., “Fabrication of CIGS solar cells with a Na-doped Mo layer on a Na-free substrate”, Thin Solid Films, Vol.515, pp. 5876-5879 (2007)
    [15] R. Caballero, C.A. Kaufmann, T. Eisenbarth, M. Cancela, R. Klenk, H.W. Schock. “ The influence of Na on low temperature growth of CIGS thin film solar cells on polymide substrate” Thin Solid Films 517, pp. 2187-2190 (2009)
    [16] Shogo Ishizuka, Akimasa Yamada, Koji Matsubara, Paul Fons, Keiichiro Sakurai, and Shieru Niki “Alkali incorporation control in Cu(In, Ga)Se2 thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency”, Applied Physics Letters 93 (2008)

    [17] Yukiko Kamikawa-Shimizu, Shuuhei Shimada, Manabu Watanabe, Akimasa Yamada, Keiichiro Sakurai, Koji Matsubara, Hitoshi Tampo, Keigou Maejima, and Shigeru Niki. “Effect of Mo back contact thickness on the properties of CIGS solar cells” Phys. Status Solidi A 206, No.5, pp. 1063-1066 (2009)
    [18] K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, S. Guha, Thermally evaporated Cu2ZnSnS4 solar cells, Applied Physics Letters 97, 143508 (2010)
    [19] Jonathan J. Scragg, J. Timo Watjen, Marika Edoff, Tove Ericson, Tomas Kubart, and Charlotte Platzer-Bjorkman, A detrimental reaction at the molybdenum back contact in Cu2ZnSn(S,Se)4 thin-film solar cells, Journal of the Amarican Chemical Society, 134, pp. 19330−19333 (2012)
    [20] D. Aaron R. Barkhouse, Oki Gunawan, Tayfun Gokmen, Teodor K. Todorov and David B. Mitzi, Device characteristics of a 10.1 % hydrazine-processed Cu2ZnSn(Se,S)4 solar cell, Progress in Photovoltaics: Research and Applications, 20, p. 6-11 (2012)
    [21] Byungha Shin, Yu Zhu, Nestor A. Bojarczuk, S. Jay Chey, Supratik Guha, Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells:8.9% power conversion efficiency with a TiN diffusion barrier, APPLIED PHYSICS LETTERS 101, 053903 (2012)
    [22] Vardaan Chawla, Bruce Clemens, “Effect of Composition on High Efficiency CZTSSe Devices Fabricated Using Co-sputtering of Compound Targets”, Photovoltaic Specialists Conference (PVSC), 38th IEEE,2990-2992 (2012)
    [23] Wenbing Yang, Hsin-Sheng Duan, Brion Bob, Bao Lei, Sheng-Han Li, Yang Yang, Novel Solution Processing of High Efficiency Earth Abundant CZTSSe Solar Cells,Photovoltaic Specialists Conference, 2012 38th IEEE, p. 2664-2667(2012)
    [24] V. Kosyak, M. A. Karmarkar, M. A. Scarpulla, Temperature dependent conductivity of polycrystalline Cu2ZnSnS4 thin films, Applied Physics Letters 100, 263903 (2012)
    [25] Byungha Shin, Oki Gunawan, Yu Zhu, Nestor A. Bojarczuk, S. Jay Chey and Supratik Guha“Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. ”Progess in Photovoltaics: Research & Applications(2011)
    [26] Andrew Fairbrother , XavierFontan’e , VictorIzquierdo-Roca , MoisesEspı’ndola-Rodrı’guez , Simon Lo’ pez-Marino , MarcelPlacidi , LorenzoCalvo-Barrio , AlejandroPe’ rez-Rodrı’guez , Edgardo Saucedo,On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks, Solar Energy Materials & Solar Cells 112 , 97–105(2013)
    [27] Andrew Fairbrother, Eric Garcia-Hemme, Victor Izquierdo-Roca, Xavier Fontane, Fabian A. Pulgarin-Agudelo, Osvaldo Vigil-Galan, Alejandro Perez-Rodriguez, and Edgardo Saucedo, Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells, Journal of the Amarican Chemical Society, 134, 8018−8021 (2012)
    [28] G. Zoppi1, I. Forbes1, R. W. Miles1, P. J. Dale, J. J. Scragg and L. M. Peter, Cu2ZnSnSe4 Thin Film Solar Cells Produced by Selenisation of Magnetron Sputtered Precursors, Progess in Photovoltaics: Research & Applications (2009)
    [29] G. Brammertz, M. Buffie`re, Y. Mevel, Y. Ren, A. E. Zaghi, N. Lenaers,Y. Mols, C. Koeble, J. Vleugels, M. Meuris, and J. Poortmans, APPLIED PHYSICS LETTERS 102, 013902 (2012)

    QR CODE