簡易檢索 / 詳目顯示

研究生: 黃文慶
Wen-ching Huang
論文名稱: 內建可見光觸媒之新型太陽能電池的設計與研究
Research and Module Design of Visible-Light Photocatalyst Driven New Solar Cell System.
指導教授: 蕭敬業
Ching-Yeh Shiau
黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 200
中文關鍵詞: 光觸媒可見光驅動太陽能電池
外文關鍵詞: visible light driven, solar energy, photocatalysts
相關次數: 點閱:188下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為研發新型太陽能電池(New Solar Cell, NSC),成功開發出NSC系統的模型,並使用透過離子交換法合成的CuFeO2、溶膠凝膠法合成的Bi20TiO32,商業化的WO3和經過400 ℃,10 % H2氣氛的熱還原氧化石墨烯(reduced graphene oxide, rGO)作為光觸媒,以作為NSC的發電的來源。其中,T400_rGO光觸媒材料的前驅物,是藉由modified Hummers’ method製備而成的氧化石墨烯(graphene oxide, GO)。除了將GO熱還原成rGO,且以此作為光觸媒的用途之外,另外還藉由光觸媒於400 W汞燈照射下將GO還原,將此用以改善其它光觸媒本身較弱的導電性質。
    光觸媒經由可見光照射,而產生光生電子電洞對。其中的光電子與電解質啟光電化學還原反應;電洞則與電解質發生光電化學氧化反應,最後用以發電。經由恆電位儀測試眾多NSC系統的結果,現階段以20_WPr與30_rGO系統的數據最佳,其所測得之最大開環電壓(open circuit voltage, Voc)為0.37 V,系統之反應面積為4.75 x 10-5 m2,故經過計算得到的最大短路電流密度(short circuit current density, Jsc)為8.6 x 10-3 A/m2,且填充因子(filling factor, FF)為34.3 %。


    In this work a new solar cell (NSC) system is demonstrated for first time. The system is powered by ion exchange fabricated CuFeO2 and sol-gel synthesized Bi20TiO32 as photocathode and anode, respectively. The use of commercial WO3 and self-made hydrogen-assisted thermal reduced graphene oxide are also studied. The precursor of T400_rGO photocatalyst is made via a modified Hummers’ method. Besides playing a role as a photocatalyst, graphene oxide here also serves as a conductive framework by photo-reduction with other photocatalyst under a 400 W mercury lamp. This proves beneficial to the electron conductivity of photocatalysts.
    Electron-hole pairs are generated while the photocatalyst is exposed to visible light. The photoelectron triggers the reduction reaction of the electrolyte and the holes participate in the photo-oxidation reaction which leads to power generation. After investigation by potential static equipment amongst several testing conditions the 20_WPr and 30_rGO show the best results. 0.37 V open circuit voltage is observed under a reaction area of 4.75 x 10-5 m2. It is found that the short circuit current density and filling factor are 8.6 x 10-3 A/m2 and 34.3 %, respectively.

    中文摘要 I ABSTRACT〈英文摘要〉 II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XV 第1章 緒論 1 1.1. 前言 1 1.2. 永續的再生能源-太陽能 5 1.3. 太陽能電池 8 1.3.1. 太陽能電池的基本原理 8 1.3.2. 太陽能電池的材料與種類 10 1.4. 燃料電池 19 1.4.1. 燃料電池的運作原理 20 1.4.2. 燃料電池的材料與種類 23 第2章 文獻回顧 26 2.1. 光觸媒材料的簡介與應用 26 2.1.1. 光觸媒的發展與特性 26 2.1.2. 涵蓋可見光範圍之光觸媒的必要性用以驅動水分解 31 2.1.3. 亞銅鐵氧化物(CuFeO2)光觸媒 34 2.1.4. 鉍鈦氧化物(Bi20TiO32)光觸媒 37 2.1.5. 石墨烯(graphene)材料 39 2.1.6. 光沉積法合成共觸媒系統 66 2.2. Z-SCHEME SYSTEM之光電化學反應 68 2.2.1. 自然界的光化學轉換(Z-scheme system) 68 2.2.2. 雙光子光觸媒系統(Z-scheme system) 69 2.3. 研究動機與目的 74 2.4. 新型太陽能電池之開發NEW SOLAR CELL-1(NSC1) 75 第3章 實驗部分 81 3.1. 實驗儀器 81 3.2. 實驗藥品 83 3.3. 實驗步驟 85 3.3.1. CuFeO2產氫光觸媒之合成 85 3.3.2. Bi20TiO32產氧光觸媒之合成 87 3.3.3. Modified Hummers’ method製備氧化石墨烯(GO) 89 3.3.4. 單以熱還原rGO作為產氫光觸媒且製成薄膜 91 3.3.5. 經由光觸媒還原製成導電用rGO與光觸媒混合薄膜 92 3.3.6. 新型太陽能電池系統的組裝與光電性質測試 93 3.4. 儀器原理與材料鑑定 97 3.4.1. 掃描式電子顯微鏡(SEM) 97 3.4.2. X射線繞射儀(XRD) 101 3.4.3. 傅立葉轉換紅外光譜儀(FT-IR) 105 3.4.4. 拉曼光譜儀(Raman) 109 3.4.5. 四點探針(Four Point Probe) 113 3.4.6. 恆電位儀(Potentiostat) 114 第4章 結果與討論 116 4.1. 光觸媒材料的鑑定與性質分析 116 4.1.1. 亞銅鐵氧化物(CuFeO2)之結構特性與表面形態分析 116 4.1.2. 鉍鈦氧化物(Bi20TiO32)之結構特性與表面形態分析 119 4.1.3. 氧化鎢(WO3)之表面型態分析 121 4.2. 光觸媒於不同照光時間對GO還原效果的影響 122 4.3. 避免FTO基材的結構於熱處理還原GO時受到影響 129 4.4. GO材料經400℃熱還原處理後的特性分析 131 4.5. NSC1系統的光電化學性質測試 137 4.5.1. 以熱還原rGO和商用WO3分別作為產氫與產氧光觸媒之NSC1系統的電性結果分析 137 4.5.2. 利用相同之NSC1系統進行多次測試以分析電性結果 143 4.5.3. 比較不同熱還原rGO之光觸媒薄膜厚度對電性測試的影響 147 4.5.4. 以熱還原rGO和Bi20TiO32分別作為產氫與產氧光觸媒之NSC1系統的電性結果分析 150 4.5.5. 以CuFeO2和商用WO3分別作為產氫與產氧光觸媒之NSC1系統的電性結果分析 154 4.5.6. 改善NSC系統中電解質漏液的現象 158 第5章 總結 161 第6章 未來展望 167 第7章 參考文獻 170

    1. J. Cook, The correlation between concentration of CO2 and global temperature anomaly. http://www.skepticalscience.com/co2-temperature-correlation.htm, 2010.
    2. International Energy Agency, Key world energy statistics. http://www.iea.org/, 2011.
    3. U.S. Energy Information Administration, Primary energy production with renewable energy distribution. http://www.eia.gov/, 2010.
    4. REN21, Renewables 2011 Global Status Report. http://www.ren21.net/, 2011.
    5. E. Becquerel, Mémoire sur les effets électriques produits sous l'influence des rayons solaires. Comptes rendus de l'Académie des Sciences, 1839. 9: p. 561-567.
    6. G. Wilson, R. Hulstrom, Best Research-Cell Efficiency. National Center for Photovoltaics, 2012.
    7. U.S. department of Energy: Energy Efficiency & Renewable Energy, Comparison of Fuel Cell Technologies. http://www.eere.energy.gov/, 2011.
    8. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972. 238(5358): p. 37-38.
    9. S. N. Frank, A. J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. Journal of Physical Chemistry, 1977. 81(15): p. 1484-1488.
    10. 李曉平,徐寶琨,劉國範等, 功能材料. 1999. 30: p. 242~245.
    11. 周祖飛,蔣偉川,劉維屏, 環境科學. 1997. 18: p. 35~37.
    12. 孫奉玉,吳鳴,李文釧等, 催化學報. 1998. 19: p. 121~124.
    13. 陳士夫,趙夢月,陶耀武等, 環境科學. 1996. 17: p. 33~35.
    14. 陳耀武,趙孟月,陳士夫等, 催化學報. 1997. 18: p. 345~347.
    15. Q. Zhang, L. Gao, J. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied Catalysis B: Environmental, 2000. 26(3): p. 207-215.
    16. Okamoto K., Yamamoto Y., H. Tanaka, M. Tanaka, A. Itaya, Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Chemical Society of Japan, 1985. 58: p. 2015-2022.
    17. Akihiko Kudo, Photocatalyst materials for water splitting. Catalysis Surveys from Asia, 2003. 7(1): p. 31-38.
    18. M. L. Trudeau, J. Y. Ying, Nanocrystalline materials in catalysis and electrocatalysis: Structure tailoring and surface reactivity. Nanostructured Materials, 1996. 7(1-2): p. 245-258.
    19. M. Anpo, N. Aikawa, S. Kodama, Y. Kubokawa, Photocatalytic hydrogenation of alkynes and alkenes with water over TiO2. Hydrogenation accompanied by bond fission. Journal of Physical Chemistry, 1984. 88(12): p. 2569-2572.
    20. 高濂,鄭珊,張青紅, 奈米光觸媒 Nano-Photocatalyst. 2004. 1: p. 18~21.
    21. X. Lai, M. Walden, D.W. Goodman, Onset of catalytic Activity of Gold Clustania on Titania with the Appearance of Normetallic Properties. . Science, 1998. 281: p. 1647-1650.
    22. M. Grätzel, Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344.
    23. K. Akihiko, Photocatalyst materials for water splitting. Catalysis Surveys from Asia, 2003. 7: p. 31-38.
    24. S. Ikeda, A. Tanaka, K. Shinohara, M. Hara, J.N. Kondo, K.I. Maruya, K. Domen, Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb6O17. Microporous Materials, 1997. 9: p. 253-258.
    25. W. Shangguan, A. Yoshida, Influence of catalyst structure and modification on the photocatalytic production of hydrogen from water on mixed metal oxide. International Journal of Hydrogen Energy, 1999. 24: p. 425-431.
    26. S. Bensaid, G. Centi, E. Garrone, S. Perathoner, G. Saracco, Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. ChemSusChem, 2012. 5: p. 500-521.
    27. R.D. Shannon, D.B. Rogers, C.T. Prewitt, Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorganic Chemistry, 1971. 10(4): p. 713-718.
    28. R.D. Shannon, P.S. Gumerman, Effect of covalence on interatomic distances in Cu+, Ag+, Tl+ and Pb2+ halides and chalcogenides. Journal of Inorganic and Nuclear Chemistry, 1976. 38(4): p. 699-703.
    29. M. Lalanne, A. Barnabé, F. Mathieu, P. Tailhades, Synthesis and thermostructural studies of a CuFe1-xCrxO2 delafossite solid solution with 0 ≤ x ≤ 1. Inorganic Chemistry, 2009. 48(13): p. 6065-6071.
    30. E. Mugnier, A. Barnabé, P. Tailhades, Synthesis and characterization of CuFeO2+δ delafossite powders. Solid State Ionics, 2006. 177(5-6): p. 607-612.
    31. M. Younsi, A. Aider, A. Bouguelia, M. Trari, Visible light-induced hydrogen over CuFeO2 via S2O32- oxidation. Solar Energy Materials & Solar Cells, 2005. 78(5): p. 574-580.
    32. S. Omeiri, Y. Gabès, A. Bouguelia, M. Trari, Photoelectrochemical characterization of the delafossite CuFeO2: Application to removal of divalent metals ions. Journal of Electroanalytical Chemistry, 2008. 614(1-2): p. 31-40.
    33. X. Lin, F. Huang, W. Wang, Y. Xia, Y. Wang, M. Liu, J. Shi, Photocatalytic Activity of a Sillenite-Type Material Bi25GaO39. Catalysis Communications, 2008. 9(5): p. 572–576.
    34. C. He, M. Gu, Photocatalytic Activity of Bismuth Germanate Bi12GeO20 Powders. Scripta Materialia, 2006. 54(7): p. 1221-1225.
    35. L.R. Hou, C.Z. Yuan, Y. Peng, Preparation and Photocatalytic Property of Sunlight-Driven Photocatalyst Bi38ZnO58. Journal of Molecular Catalysis A: Chemical, 2006. 252(2): p. 132–135.
    36. J. Yu, A. Kudo, Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4. Advanced Functional Materials, 2006. 16(16): p. 2163–2169.
    37. A. Kudo, K. Omori, H. Kato, A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. Journal of the American Chemical Society, 1999. 121(149): p. 11459–11467.
    38. J. Yu, J. Xiong, B. Cheng, Y. Yu, J. Wang, Hydrothermal Preparation and Visible-Light Photocatalytic Activity of Bi2WO6 Powders. Journal of Solid State Chemistry, 2005. 178(6): p. 1968–1972.
    39. J. Wu, F. Duan, Y. Zheng, Y. Xie, Synthesis of Bi2WO6 Nanoplate-Built Hierarchical Nest-like Structures with Visible-Light Induced Photocatalytic Activity. The Journal of Physical Chemistry C, 2007. 111(34): p. 12866–12871.
    40. J. Tang, Z. Zou, J. Ye, Efficient Photocatalytic Decomposition of Organic Contaminants over CaBi2O4 under Visible-Light Irradiation. Angewandte Chemie International Edition, 2004. 43(34): p. 4463-4466.
    41. W.F. Yao, H. Wang, X.H. Xu, J.T. Zhou, X.N. Yang, Y. Zhang, S.X. Shang, Photocatalytic Property of Bismuth Titanate Bi2Ti2O7. Applied Catalysis A: General, 2004. 259(1): p. 29-33.
    42. W.F. Yao, H. Wang, X.H. Xu, S.X. Shang, Y. Hou, Y. Zhang, M. Wang, Synthesis and Photocatalytic Property of Bismuth Titanate Bi4Ti3O12. . Materials Letters, 2003. 57(13): p. 1899–1902.
    43. N. Thanabodeekij, E. Gulari, S. Wongkasemjit, Bi12TiO20 Synthesized Directly from Bismuth (III) Nitrate Pentahydrate and Titanium Glycolate and Its Activity. Powder Technology, 2005. 160(3): p. 203–208.
    44. W.F. Yao, H. Wang, X.H. Xu, X.F. Cheng, J. Huang, S.X. Shang, X.N. Yang, M. Wang, Photocatalytic Property of Bismuth Titanate Bi12TiO20 Crystals. Applied Catalysis A: General, 2003. 243(1): p. 185–190.
    45. X.H. Xu, W.F. Yao, Y. Zhang, A.Q. Zhou, Y. Hou, M. Wang, Photocatalytic Properties of Bismuth Titanate Compounds. Acta Chimica Sinica, 2005. 63(1): p. 5-10.
    46. P. Durán, F. Capel, C. Moure, M. Villegas, J.F. Fernández, J. Tartaj, A.C. Caballero, Processing and Dielectric Properties of the Mixed-Layer Bismuth Titanate Niobate Bi7Ti4NbO21 by the Metal-Organic Precursor Synthesis Method. Journal of the European Ceramic Society, 2001. 21(1): p. 1-8.
    47. Y. Hou, M. Wang, X.H. Xu, D. Wang, H. Wang, S.X. Shang, Dielectric and Ferroelectric Properties of Nanocrystalline Bi2Ti2O7 Prepared by a Metallorganic Decomposition Method. . Journal of the American Ceramic Societ, 2002. 85(12): p. 3087–3089.
    48. H. Zheng, B. Huang, Y. Dai, X. Qin, X. Zhang, Z. Wang, M. Jiang, Visible-Light Photocatalytic Activity of the Metastable Bi20TiO32 Synthesized by a High-Temperature Quenching Method. Journal of Solid State Chemistry, 2009. 182(2274–2278).
    49. X. Sun, L. Sun, H. Zhang, J. Ma, Preparation of Visible-Light Responsive Photocatalyst (Bi20TiO32) and its Photocatalytic Activity for Degrading Organic Pollutants. . ICEET '09 Proceedings of the 2009 International Conference on Energy and Environment Technology, 2009. 1: p. 253-256
    50. P.R. Wallace, The band theory of graphite. Physical Review, 1947. 71(9): p. 622-634.
    51. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, Electric field in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
    52. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: Past, present and future. Progress in Materials Science, 2011. 56(8): p. 1178-1271.
    53. A.K. Geim, K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
    54. M. Goosey, A short introduction to graphene and its potential interconnect applications. Circuit World, 2012. 38(2): p. 83-86.
    55. J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, A. Zettl, Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters, 2008. 8(11): p. 3582-3586.
    56. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, New insights into the structure and reduction of graphite oxide. Rice University, 2009. 1: p. 403-408.
    57. K. Erickson, R. Erni, Z. Lee, N. Alem, W. Gannett, A. Zettl, Determination of the local chemical structure of graphene oxide and reduced graphene oxide . Advanced Materials, 2010. 22(40): p. 4467-4472.
    58. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Letters, 2006. 6(12): p. 2667-2673.
    59. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Preparation and characterization of graphene oxide paper. Nature, 2007. 448(7152): p. 457-60.
    60. S. Park, K.S. Lee, G. Bozoklu, W. Cai, S. Binh, T. Nguyen, R.S. Ruoff, Graphene Oxide Papers Modified by Divalent Ions—Enhancing Mechanical Properties via Chemical Cross-Linking. ACS Nano, 2008. 2(3): p. 572-578.
    61. K.N. Kudin, G.E. Scuseria, B.I. Yakobson, C2F, BN, and C nanoshell elasticity from ab initio computations. Physical Review B - Condensed Matter and Materials Physics, 2001. 64(23): p. 2354061-23540610.
    62. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Letters, 2008. 8(3): p. 902-907.
    63. H. Chen, M. B. Muller, K. J. Gilmore, G. G. Wallace, D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper. Advanced Materials, 2008. 20: p. 3557-3561.
    64. J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Cuo, Y. Chen, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater, 2009. 19(14): p. 2297–2302.
    65. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-388.
    66. R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, L. Hornekær, Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature Materials, 2010. 9(4): p. 315-319.
    67. H. Zhao, K. Min, N.R. Aluru, Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Letters, 2009. 9(8): p. 3012-3015.
    68. F. Scarpa, S. Adhikari, A. Srikantha Phani, Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology, 2009. 20(6): p. art. no. 065709.
    69. K.N. Kudin, G.E. Scuseria, B.I. Yakobson, Oxygen-driven unzipping graphite materials. Phys Rev B, 2001. 64.
    70. G. Van Lier, C. Van Alsenoy, V. Van Doren, P. Geerlings, Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chemical Physics Letters, 2000. 326(1-2): p. 181-185.
    71. D.H. Robertson, D.W. Brenner, J.W. Mintmire, Energetics of nanoscale graphitic tubules. Physical Review B, 1992. 45(21): p. 12592-12595.
    72. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. Journal of Physics Condensed Matter, 2002. 14(4): p. 783-802.
    73. S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. . Nature nanotechnology, 2009. 4 (4): p. 217-224.
    74. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 2008. 3(2): p. 101-105.
    75. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science (Oxford), 2010. 35(3): p. 357-401.
    76. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000. 287(5453): p. 637-640.
    77. Y. Li, K. Wang, J. Wei, Z. Gu, Z. Wang, J. Luo, D. Wu, Tensile properties of long aligned double-walled carbon nanotube strands. Carbon, 2005. 43(1): p. 31-35.
    78. S.M. Yuen, C.C.M. Ma, C.L. Chiang, J.A. Chang, S.W. Huang, S.C. Chen, C.Y. Chuang, M.H. Wei, Silane-modified MWCNT/PMMA composites - Preparation, electrical resistivity, thermal conductivity and thermal stability. Composites Part A: Applied Science and Manufacturing, 2007. 38 (12): p. 2527-2535.
    79. M.E. Itkis, F. Borondics, A. Yu, R.C. Haddon, Thermal conductivity measurements of semitransparent single-walled carbon nanotube films by a bolometric technique. Nano Letters, 2007. 7(4): p. 900-904.
    80. M. Lewandowska, A.T. Krawczyńska, M. Kulczyk, K.J. Kurzydłowski, Structure and properties of nano-sized Eurofer 97 steel obtained by hydrostatic extrusion. Journal of Nuclear Materials, 2009. 386-388(C): p. 499-502.
    81. D.I. Shin, F. Gitzhofer, C. Moreau, Thermal property evolution of metal based thermal barrier coatings with heat treatments. Journal of Materials Science, 2007. 42(15): p. 5915-5923.
    82. K. Chrissafis, K.M. Paraskevopoulos, E. Pavlidou, D. Bikiaris, Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochimica Acta, 2009. 485(1-2): p. 65-71.
    83. Y.C. Li, G.H. Chen, HDPE/expanded graphite nanocomposites prepared via masterbatch process. Polymer Engineering and Science, 2007. 47(6): p. 882-888.
    84. M.W. Woo, P. Wong, Y. Tang, V. Triacca, P.E. Gloor, A.N. Hrymak, Melting behavior and thermal properties of high density polyethylene. Polym Eng Sci, 1995. 35: p. 151-156.
    85. S. Yuhai, L. Yuanfang, J. Demin, Preparation and properties of natural rubber nanocomposites with solid-state organomodified montmorillonite. Journal of Applied Polymer Science, 2008. 107(5): p. 2786-2792.
    86. Matbase VOF. Natural rubber properties. Accessed. http://www.matbase.com/material/polymers/elastomers/natural-rubber/properties, 2010.
    87. About.Com. Composites: Kevlar®. Accessed. http://composite.about.com/od/aboutcompositesplastics/l/aa050597.htm, 2010.
    88. G. Ventura, V. Martelli, Thermal conductivity of Kevlar 49 between 7 and 290 K. Cryogenics, 2009. 49(12): p. 735-737.
    89. J. Ito, J. Nakamura, A. Natori, Semiconducting nature of the oxygen-adsorbed graphene sheet. Journal of Applied Physics, 2008. 103(11): p. 113712.
    90. T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H. Teng, Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Materials, 2010: p. 2255-2262.
    91. T.F. Yeh, F.F. Chan, C.T. Hsieh, H. Teng, Graphite Oxide with Different Oxygenated Levels for Hydrogen and Oxygen Production from Water under Illumination: The Band Positions of Graphite Oxide. The Journal of physical chemistry C, 2011. 115: p. 22587 –22597.
    92. H.-B. Zhang, Zheng, W.-G., Yan, Q., Yang, Y., Wang, J.-W., Lu, Z.-H., Ji, G.-Y., (...), Yu, Z.-Z., Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer, 2010. 51(5): p. 1191-1196.
    93. M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, Y. J. Chabal, Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature Materials, 2010. 9: p. 840-845.
    94. O. Akhavan, Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol. Carbon, 2011. 49: p. 11-18.
    95. Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, A.T.S. Wee, Raman studies of monolayer graphene: The substrate effect. Journal of Physical Chemistry C, 2008. 112(29): p. 10637-10640.
    96. G. Eda, M. Chhowalla, Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Advanced Materials, 2010. 22: p. 2392-2415.
    97. Jr.W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339.
    98. J.I. Parades, S. Villar-Rodil, A. Martínez-Alonso, J.M.D. Tascón, Graphene oxide dispersions in organic solvents. Langmuir, 2008. 24(19): p. 10560-10564.
    99. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565.
    100. S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry, 2006. 16(2): p. 155-158.
    101. A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, I. Dékány, Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir, 2003. 19(15): p. 6050-6055.
    102. S. Wang, P.J. Chia, L.L. Chua, L.H. Zhao, R.Q. Png, S. Sivaramakrishnan, M. Zhou, P.K.H. Ho, Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Advanced Materials, 2008. 20(18): p. 3440-3446.
    103. Z.-S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, H.-M. Cheng, Synthesis of high-quality graphene with a pre-determined number of layers. Carbon, 2009. 47(2): p. 493-499.
    104. X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Advanced Materials, 2008. 20(23): p. 4490-4493.
    105. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonson, D.H. Adamson, R.K. Prud'homme, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B, 2006. 110(17): p. 8535-8539.
    106. M.J. McAllister, J.L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, I.A. Aksay, Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, 2007. 19(18): p. 4396-4404.
    107. S. Mao, H. Pu, J. Chen, Graphene oxide and its reduction: modeling and experimental progress. RSC Advances, 2012. 2: p. 2643-2662.
    108. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
    109. Y. Sasaki, H. Nemoto, K. Saito, A. Kudo, Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. Journal of Physical Chemistry C, 2009. 113(40): p. 17536-17542.
    110. R. Abe, T. Takata, H. Sugihara, K. Domen, Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator. Chemical Communications, 2005. 30: p. 3829-3831.
    111. M. Higashi, R. Abe, K. Teramura, T. Takata, Ohtani B., K. Domen, Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3-/ I- shuttle redox mediator. Chemical Physics Letters, 2008. 452(1-3): p. 120-123.
    112. H. Kato, M. Hori, R. Konta, Y. Shimodaira, A. Kudo, Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chemistry Letters, 2004. 33(10): p. 1348-1349.
    113. 陳泓明, Synthesis of nanocrystalline CuFeO2 by ion-exchange method and its applications on hydrogen generation via visible-light-driven photocatalytic water splitting. National Taiwan University of Science and Technology - Chemical Engineering, 2010.
    114. 江冠廷, CuFeO2 photocatalysts prepared by modified ion exchange method and its applications on hydrogen generation via visible-light-driven water splitting. National Taiwan University of Science and Technology - Chemical Engineering, 2011.
    115. V. Ochie, Solar Light Driven Photocatalyst Bi20TiO32: Synthesis and Photocatalytic Activity toward Water Oxidation. National Taiwan University of Science and Technology - Chemical Engineering, 2011.
    116. Moxfyre, Molecular energy levels and Raman effect. http://en.wikipedia.org/wiki/C._V._Raman, 2009.
    117. E.B. Kuthi, Crystalline silicon solar cells with selective emitter and the self-doping contact. 2004: p. 21-31.

    無法下載圖示 全文公開日期 2017/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE