簡易檢索 / 詳目顯示

研究生: 單啟文
Charles - Steven Sanchez J.
論文名稱: 太陽光電板南向最佳傾角及緯度關係之研究與驗證
Research of BIPV optimal tilted angle use of latitude concept for south orientated plans
指導教授: 鄭 政 利
Cheng-Li Cheng
口試委員: 詹肇裕
Zhao-yu Jan
黃志弘
Chih-hung Huang
施宣光
Shen-Guan Shih
林慶元
Ching-Yuan Lin
江維華
Wei-Hwa Chiang
學位類別: 博士
Doctor
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 146
中文關鍵詞: 傾角建築整合型太陽光電系統(BIPV)太陽能
外文關鍵詞: Tilted angle, Solar energy, Building Integrated Photovoltaics (BIPV)
相關次數: 點閱:431下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 依據BIPV光電發電動態模擬軟體所評估的數據,本研究分析建築整合型太陽光電系統的最佳角度,與系統測量位置緯度之間的關連性。這些數據的分析與驗證,係根據北緯零度到八十五度,十四個國家中的二十個不同的地區的資料進行試算評估。各地區的建築整合太陽光電系統,假設採用單晶矽太陽光電板,並將固定設置南向之傾斜角度。本文試圖找出系統經由最佳傾角估量所得之成果,以及系統位置之緯度的關連性,進一步驗證將當地緯度作為此面板傾角之假設。最終結果顯示,以緯度作為太陽光電板傾角的系統,可獲得以最佳傾角所得之98.6%評估效益。本論文的結論指出選擇緯度作為太陽光電板傾角之可靠性,並且證明存在於面板的最佳傾角和系統設置當地緯度的直接關連性


    As the author of the present thesis I would like to express my gratitude to the Architecture Department of the National Taiwan University of Science and Technology and its professors with special emphasis to the department’s Chairman Dr. Chiang Wei-Hua for his constant support during my PhD program. Among all the appreciation I should express to classmates, friends, and National Taiwan University of Science and Technology staff I emphasis my deepest gratitude to my mentor and friend Professor Cheng Cheng-Li, whose advice guidance and teachings made my experience in Taiwan more valuable.
    Deep thanks to the evaluation committee composed by professors Huang Zhe-Hong, Zhan Zhau-Yu, Chiang Wei-Hua, Cheng Cheng-Li, Lin Ching-Yuen and She Xuan-Guang for their time and judgment during the evaluation process and oral defense of this research project.

    Abstract ...………………………………………………………………………………..……I Abstract in Chinese (中文摘要) ...…………………………………………………………III Acknowledgments …………...………………………………………………………………V Table of contents ………………………………………….………………………………VII List of Figures ...…………………………………………………………………………….XI List of Tables ……………………………………………………………………………...XIII Nomenclature ……………………………………………………………………………....XV Greek letters ………………………………………………………………………………XVI Chapter I Introduction …………………………………………………………………………………..1 1.1 Background and motivation ……………………………………………………………….1 1.2 Objectives and scope ………………………………………………………………………2 1.3 Methodology, research process and structure ……………………………………………..3 Chapter II Literature review ……………………………………………………………………………..6 2.1 Photovoltaic in buildings ………………………………………………………………….7 2.1.1 BIPV concept and applications ………………………………………………8 2.1.2 Photovoltaic systems productivity and energy intensity ……………………11 2.1.3 Evaluation of BIPV benefits and previous case studies ……………………16 2.2 Evaluation and estimation models for BIPV …………………………………………….19 2.2.1 Theories for estimation of slope irradiation ………………………………...21 2.2.2 Estimate of annual slope irradiation ratio …………………………………..21 2.2.3 Estimate of monthly south slope irradiation ratio …………………………..22 2.2.4 Estimate of PV power in building …………………………………………..22 2.3 Theories of optimal orientation and tilted angle for PV ……………………………...22 2.3.1 Earth’s orbit inclination …………………………………………………………..23 2.3.2 Optimal angle and tilted variations for optimal performance in PV and solar collectors ……………………………………………………………………………………..24 Chapter III Estimation models for PV systems’ performance ………………………………………...26 3.1 International Solar Database …………………………………………………………...26 3.1.1 International Solar Databases description ………………………………….27 3.1.2 International Solar Databases comparison ………………………………….28 3.1.3 Conclusions from International Solar Databases comparison ………………29 Chapter IV Experimentation …………………………………………………………………………….30 4.1 Locations range …………………………………………………………………………..30 4.2 Calculations with PVSYST3.41 …………………………………………………………...31 4.3 Experimentation using PVSYST3.41 ……………………………………………………...34 4.4 Verification of computer simulation data with real condition experiments ……………...35 4.5 Results and discussion …………………………………………………………………...36 Chapter V General conclusions and Suggestions ……………………………………………………...41 5.1 General conclusions ……………………………………………………………………...41 5.2 Suggestions ………………………………………………………………………………41 References ……………………………………………………………………………….…..43 Bibliography A. Bibliography …………………………………………………………………………..45 B. Internet data sources ………………………………………………………………….48 Appendix Appendix I. Estimations on energy output for system’s optimal angle, latitude angle slope every ten degrees …………………………………………….A-1 Appendix II. PVSYST software introduction, technical specification, and simulation process …………………………………………………..………...A-15 Appendix III. Research paper published. Renewable Energy, “Research of BIPV optimal tilted angle use of latitude concept for south orientated plans” ……………………………………………………………...A-23 Appendix IV. Research submission “The effect of suspended particulate matter (PM2.5) on the performance of a BIPV system in urban environment…...…………………………………………………...A-33 Appendix V. Conference Paper presented at the ISES (International Solar Energy Society)Solar World Congress 2007……………………………….A-57 Appendix VI. Conference Paper, 中華民國建築學會. 建築結合BIPV太陽能光電電池系統之效益評估模式-斜面日射量推估模式之分析比較 (中文)- [Analysis and evaluation of assessment methods and strategies for Building Integrated Photovoltaic (BIPV) - Estimative models of irradiation on tilted planes] .............................................................A-63 Appendix VII. List of submissions for conference and journal publication ………A-71 Appendix VIII. Author’s personal information …………………………………….A-75

    References
    [1] Oliver M, Jackson T. Energy and economic evaluation of building-integrated photovoltaics. Energy 2001; 26: 431–39.
    [2] International Energy Agency. Building Integrated Photovoltaic Systems, Guidelines for Economic Evaluation, Report. IEA PVPS T7-05: 2002.
    [3] Elminir H. K., et al. Effect of dust on the transparent cover of solar collectors. Energy Conversion and Management 2006; 47:3192–203
    [4] Asl-Soleimani E., Farhangi S., Zabihi M.S. The effect of tilt angle, air pollution on performance of photovoltaic systems in Tehran. Renewable Energy 2001; 24: 459–68
    [5] Tian W., Wang Y., Ren J., Zhu L. Effect of urban climate on building integrated photovoltaics performance. Energy Conversion and Management 2007; 48:1–8
    [6] Kurokawa K. PV systems in urban environment. Solar Energy Materials & Solar Cells 2001; 67: 469–79
    [7] Fordham M. Photovoltaics and Architecture. Thomas R, editor. London: Spon Press; 2001, p.17-32.
    [8] Chan C-Y. The Evaluation and Strategy of Photovoltaic Technology Applied in Building Design. Doctoral Thesis; National Taiwan University of Science and Technology, Architecture Department 2005.
    [9] Geun Y. Y, McEvoy M, Steemers K. Design and overall energy performance of a ventilated photovoltaic façade. Solar Energy 2007; 81: 383-409
    [10] The Energy Intensity of Photovoltaic Systems. Blakers A, Weber K. Centre for Sustainable Energy Systems. Engineering Department, Australian National University. October 2000
    [11] US Energy Department. http://www.energy.gov/
    [12] Alsema, E.A., Frankl, P., Kato, K., 1998. Energy pay-back time of photovoltaic energy systems: present status and future prospects. In: Proceedings of the Second World Conference on Photovoltaic Solar Energy Conversion, Vienna. pp. 6–10.
    [13] Sun and Wind Energy magazine, February 2009; p. 68-73
    [14] Yang H, Zheng G, Lou C, An D., Burnett J. Grid-connected building-integrated photovoltaics: a Hong Kong case study. Solar Energy 2004; 76: 55-59.
    [15] Cheng C.L, Chan C.Y, Chen C.L. Empirical approach to BIPV evaluation of solar irradiation for building applications. Renewable Energy 2005; 30: 1055-74.
    [16] Shariah A, Al-Akhras M, Al-Omari I.A. Optimizing the tilt angle of solar collectors. Renewable Energy 2002; 26:587–98.
    [17] Gunerhan H, Hepbasli A. Determination of the optimum tilt angle of solar collectors for building applications. Building and Environment 2007; 42: 779–83.
    [18] Hussein H. M. S, Ahmad G. E, El-Ghetany H. H. Performance evaluation of photovoltaic modules at different tilt angles and orientations. Energy Conversion and Management 2004; 45: 2441-52.
    [19] Elminir H.K, Ghitas A. E, El-Hussainy F, Hamid R, Beheary M. M, Abdel-Moneim K. M. Optimum solar flat-plate collector slope:Case study for Helwan, Egypt. Energy Conversion and Management 2006; 47: 624-37.
    [20] NASA Surface Meteorology and Solar Energy. Retrieved February 7, 2007, from http://eosweb.larc.nasa.gov/cgi-bin/sse/sse.cgi
    [21] Solar Energy database, University of Massachusetts. Retrieved January, 2007, from http://energy.caeds.eng.uml.edu/
    [22] Taiwan Central Weather Bureau. http://www.cwb.gov.tw/eng/index.htm

    A. Bibliography
    1. Asl-Soleimani E., Farhangi S., Zabihi M.S. The effect of tilt angle, air pollution on performance of photovoltaic systems in Tehran. Renewable Energy 2001; 24: 459–68
    2. Chan C-Y. The Evaluation and Strategy of Photovoltaic Technology Applied in Building Design. Doctoral Thesis; National Taiwan University of Science and Technology, Architecture Department 2005.
    3. Chang S.-C, Le C.-T. Evaluation of the temporal variations of air quality in Taipei City, Taiwan, from 1994 to 2003. Journal of Environmental Management 2008; 86: 627–35
    4. Cheng C.L, Chan C.Y, Chen C.L. Empirical approach to BIPV evaluation of solar irradiation for building applications. Renewable Energy 2005; 30: 1055-74.
    5. Crawford R. H, Treloar G. J, Fuller R. F, Bazilian M. Life-cycle energy analysis of building integrated photovoltaic systems (BiPVs) with heat recovery unit. Renewable and Sustainable Energy Reviews 2006; 10: 559-75.
    6. Elminir H. K., et al. Effect of dust on the transparent cover of solar collectors. Energy Conversion and Management 2006; 47:3192–203
    7. Elminir H.K, Ghitas A. E, El-Hussainy F, Hamid R, Beheary M. M, Abdel-Moneim K. M. Optimum solar flat-plate collector slope:Case study for Helwan, Egypt. Energy Conversion and Management 2006; 47: 624-37.
    8. Fordham M. Photovoltaics and Architecture. Thomas R, editor. London: Spon Press; 2001, p.17-32.
    9. Gunerhan H, Hepbasli A. Determination of the optimum tilt angle of solar collectors for building applications. Building and Environment 2007; 42: 779–83.
    10. Hussein H. M. S, Ahmad G. E, El-Ghetany H. H. Performance evaluation of photovoltaic modules at different tilt angles and orientations. Energy Conversion and Management 2004; 45: 2441-52.
    11. International Energy Agency. Building Integrated Photovoltaic Systems, Guidelines for Economic Evaluation, Report. IEA PVPS T7-05: 2002.
    12. Kurokawa K. PV systems in urban environment. Solar Energy Materials & Solar Cells 2001; 67: 469–79
    13. Lin C.Y., et al. Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmospheric Environment 2008; doi:10.1016/j.atmosenv.2008.03.015
    14. Miles R.W. Photovoltaic solar cells: Choice of materials and production methods. Vacuum 2006; 80:1090-97.
    15. Oliver M, Jackson T. Energy and economic evaluation of building-integrated photovoltaics. Energy 2001; 26: 431–39.
    16. Shariah A, Al-Akhras M, Al-Omari I.A. Optimizing the tilt angle of solar collectors. Renewable Energy 2002; 26:587–98.
    17. Sun and Wind Energy magazine, February 2009; p. 68-73
    18. Takashi Oozeki et al. An evaluation method of PV systems. Solar Energy Materials & Solar Cells 75 (2003) 687-95.
    19. Takashi Oozeki et al. An evaluation method of PV systems. Solar Energy Materials & Solar Cells 75 (2003) 687-95.
    20. Tian W., Wang Y., Ren J., Zhu L. Effect of urban climate on building integrated photovoltaics performance. Energy Conversion and Management 2007; 48:1–8
    21. Van der Borg N.J.C.M, Jansen M. J. Energy loss due to Shading in BIPV application. 3rd World Conference on Photovoltaic Energy Conversion, Osaka (Japan) 2003.
    22. Yakup MABHM, Malik A. Q. Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renewable Energy 2001; 24: 223-34.
    23. Yang H, Zheng G, Lou C, An D., Burnett J. Grid-connected building-integrated photovoltaics: a Hong Kong case study. Solar Energy 2004; 76: 55-59.
    24. Yoo S. H, Lee E. T. Efficiency characteristic of building integrated photovoltaics as a shading device. Building and Environment 2002; 37: 615-723.
    25. Young Y. G, McEvoy M, Steemers K. Design and overall energy performance of a ventilated photovoltaic façade. Solar Energy 2007; 81: 383-94.

    B. Internet data sources
    1. Mermoud A. (1996). PVSYST Version 3.41. User's Manual. Geneva: University of Geneva, University Center for the Study of Energy Problems. Retrieved July 1, 2007, from: http://www.pv syst.com/
    2. NASA Surface Meteorology and Solar Energy. Retrieved February 7, 2007, from http://eosweb.larc.nasa.gov/cgi-bin/sse/sse.cgi
    3. Solar Energy database, University of Massachusetts. Retrieved January, 2007, from http://energy.caeds.eng.uml.edu/
    4. Taiwan Central Weather Bureau. http://www.cwb.gov.tw/eng/index.htm
    5. Taiwan Environmental Protection Administration. http://www.epa.gov.tw/en/index.aspx
    6. US Energy Department. http://www.energy.gov/

    QR CODE