簡易檢索 / 詳目顯示

研究生: 曾恒慧
Heng-Huei Zeng
論文名稱: 表面工程用於提升量子點敏化太陽能電池之效能
Surface engineering for improving the performance of quantum dot-sensitized solar cells
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 江佳穎
Chia-Ying Chiang
葉旻鑫
Min-Hsin Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 121
中文關鍵詞: 量子點敏化太陽能電池共敏化釓離子處理級聯能階表面工程
外文關鍵詞: Quantum dot, sensitized solar cells, Co-sensitization, Gadolinium ion treatment, Cascade Energy Structure, Surface engineering
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以水相微波輔助合成法,一步合成CuInSe2(CISe)三元量子點,在合成過程中藉由四種具有巰基與羧基的雙功能分子作為包覆劑,並探討對CISe量子點的合成差異性,尤其以半胱胺酸(L-cysteine)包覆的CISe量子點,在光學性質的量測中,擁有較廣的吸光範圍與更低的缺陷密度,後續應用至太陽能電池,此條件擁有四者中最高的光電轉換效率,其值高達9.06%。
    隨後為了更進一步提升量子點敏化劑之效能,本研究以半胱胺酸包覆的CISe量子點為基礎,依序以CuInS2(CIS)量子點共敏化與釓離子(Gd3+)表面處理等兩種方式對敏化劑結構進行額外改良。在共敏化的方式中,CIS量子點加入後與CISe量子點相異的結構在吸收光譜產生互補性,增加對入射光的利用,且透過共敏化後在光陽極內部形成的梯狀能隙結構,提升電子注入的驅動力;而釓離子表面處理方面,則利用其獨特的4f7價層軌域,加速激發電子的傳遞速率,且陽離子披覆在量子點表面上不僅能鈍化晶格缺陷,還能藉由靜電力提升以增加量子點共敏化的負載量;經由CIS量子點共敏化與釓離子表面處理後,太陽能電池元件的短路電流密度(JSC)從26.0 mA·cm-2上升至31.4 mA·cm-2,光電轉換效率高達10.97%。


    In the present study, we have developed low-cost and solution-processed ternary CuInSe2 (CISe) quantum dots (QDs) using a one-step microwave-assisted pyrolysis approach. For this, mixtures of various bifunctional molecules with thiol and carboxyl groups were used as capping agents, and their effects on the optical, structural, and efficacy in quantum dot-sensitized solar cells (QDSSCs) have been thoroughly investigated. Accordingly, the optical performance of CISe QD-coated with L-cysteine demonstrated a wider light absorption band and lower defect density. Benefitting from its superior light-harvesting ability and better electrocatalytic properties, the L-cysteine coated CISe QD demonstrated the highest power conversion efficiency (PCE), with a value reaching up to 9.06 %, in QDSSCs.
    Moreover, in order to enhance the efficacy of QDSSC, we developed two different surface modification strategies for the sensitizer molecule, followed by co-sensitization of CuInS2 (CIS) QD and surface treatment by gadolinium ion (Gd3+). In the co-sensitization method, the structural differences between CIS QDs and CISe QDs result in complementary optoelectronic properties that improve the utilization of incident light. Furthermore, a better cascade energy structure that formed inside the photoanode increased the driving force of electron injection. The coating of cations on the surface of QDs brought not only passivates the lattice defects but also strengthens the electrostatic force, leading to increased QD co-sensitization loading. Whereas, the unique transitions of 4f7 valence orbital may speed up the transfer rate of excited electrons in the case of surface treatment by Gd3+. As a result, the QDSSCs with surfaces modified CISe QDs boosted the short-circuit current density (JSC) from 26.0 mA·cm-2 to 31.4 mA·cm-2, thus resulting in a high PCE of 10.97%.

    摘要 I Abstract II 致謝 III 總目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池研究發展現況 1 1.2.1 染料敏化太陽能電池(Dye-Sensitized Solar Cell) 2 1.2.2 量子點敏化太陽能電池(Quantum dots-Sensitized Solar Cell) 2 1.2.3 鈣鈦礦太陽能電池(Perovskite Solar Cells) 3 1.3 研究動機 4 第二章 文獻回顧 6 2.1 量子點性質 6 2.1.1 量子侷限效應(Quantum Confinement Effect) 6 2.1.2 多重激子化效應(Mulitiple Exciton Generation) 8 2.2 量子點敏化太陽能電池(Quantum dots-sensitized solar cell, QDSSC) 11 2.2.1 工作機制(Work mechanism) 11 2.2.2 電池內部元件介紹 12 2.2.3 量子點敏化方法 22 2.2.4 量子點敏化劑結構改良 33 第三章 實驗步驟 40 3.1 實驗藥品 40 3.2 實驗儀器 42 3.3 量子點敏化太陽能電池元件製備步驟 44 3.3.1 FTO導電玻璃清洗 44 3.3.2 光陽極致密層沉積 44 3.3.3 光陽極二氧化鈦薄膜製備 45 3.3.4 CuInSe2(CISe)水相量子點敏化劑製備 46 3.3.5 CuInS2(CIS)水相量子點敏化劑製備 47 3.3.6 光陽極敏化與釓離子(Gd3+)表面處理 48 3.3.7 SILAR法沉積CdZnS鈍化層 49 3.3.8 CuxSe/g-C3N4背電極製備 49 3.3.9 多硫化物電解液製備 50 3.3.10 電池元件封裝 50 第四章 結果與討論 52 4.1 PartⅠ—配體工程改良水相量子點的合成 53 4.1.1 材料分析與鑑定 53 4.1.2 元件效能分析 62 4.2 PARTⅡ—量子點敏化劑結構改良 70 4.2.1 共敏化策略 70 4.2.2 釓離子表面處理 79 4.2.3 元件光電性質分析 88 第五章 結論與未來展望 96 參考文獻 97

    [1] Lewis, N. S.; Nocera, D. G., Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A. 2006, 103 (43), 15729-35.
    [2] Ribeyron, P.-J., Crystalline silicon solar cells: Better than ever. Nature Energy. 2017, 2 (5), 17067.
    [3] O'Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991, 353 (6346), 737-740.
    [4] Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2003, 4 (2), 145-153.
    [5] Zaban, A.; Mićić, O. I.; Gregg, B. A.; Nozik, A. J., Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots. Langmuir. 1998, 14 (12), 3153-3156.
    [6] Song, H.; Lin, Y.; Zhang, Z.; Rao, H.; Wang, W.; Fang, Y.; Pan, Z.; Zhong, X., Improving the Efficiency of Quantum Dot Sensitized Solar Cells beyond 15% via Secondary Deposition. J Am Chem Soc. 2021, 143 (12), 4790-4800.
    [7] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society. 2009, 131 (17), 6050-6051.
    [8] Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports. 2012, 2 (1), 591.
    [9] Green, M., Solution routes to III-V semiconductor quantum dots. Current opinion in solid state & materials science. 2002, 6 (355), 355-363.
    [10] Bera, D.; Qian, L.; Tseng, T. K.; Holloway, P. H., Quantum Dots and Their Multimodal Applications: A Review. Materials. 2010, 3 (4), 2260-2345.
    [11] Nozik, A. J., Quantum dot solar cells. Physica E-Low-Dimensional Systems & Nanostructures. 2002, 14 (1-2), 115-120.
    [12] Schaller, R. D.; Klimov, V. I., High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett. 2004, 92 (18), 186601.
    [13] Minami, T., New n-Type Transparent Conducting Oxides. MRS Bulletin. 2000, 25 (8), 38-44.
    [14] Jose, R.; Thavasi, V.; Ramakrishna, S., Metal Oxides for Dye-Sensitized Solar Cells. Journal of the American Ceramic Society. 2009, 92 (2), 289-301.
    [15] Gubbala, S.; Russell, H. B.; Shah, H.; Deb, B.; Jasinski, J.; Rypkema, H.; Sunkara, M. K. J. E.; Science, E., Surface properties of SnO2 nanowires for enhanced performance with dye-sensitized solar cells. Energy & Environmental Science. 2009, 2 (12), 1302-1309.
    [16] Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M., Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells. ACS Nano. 2011, 5 (6), 5158-5166.
    [17] Chandiran, A. K.; Abdi-Jalebi, M.; Nazeeruddin, M. K.; Gratzel, M., Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano. 2014, 8 (3), 2261-8.
    [18] Kovash, C. S.; Hoefelmeyer, J. D.; Logue, B. A., TiO2 compact layers prepared by low temperature colloidal synthesis and deposition for high performance dye-sensitized solar cells. Electrochimica Acta. 2012, 67, 18-23.
    [19] Zhang, D.; Stojanovic, M.; Ren, Y.; Cao, Y.; Eickemeyer, F. T.; Socie, E.; Vlachopoulos, N.; Moser, J.-E.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M., A molecular photosensitizer achieves a Voc of 1.24 V enabling highly efficient and stable dye-sensitized solar cells with copper(II/I)-based electrolyte. Nature Communications. 2021, 12 (1), 1777.
    [20] Biernat, K.; Malinowski, A.; Gnat, M., The possibility of future biofuels production using waste carbon dioxide and solar energy. InTech: 2013.
    [21] Senthamilselvi, V.; Saravanakumar, K.; Jabena Begum, N.; Anandhi, R.; Ravichandran, A. T.; Sakthivel, B.; Ravichandran, K., Photovoltaic properties of nanocrystalline CdS films deposited by SILAR and CBD techniques—a comparative study. Journal of Materials Science: Materials in Electronics. 2012, 23 (1), 302-308.
    [22] Brown, P.; Kamat, P. V., Quantum dot solar cells. electrophoretic deposition of CdSe− C60 composite films and capture of photogenerated electrons with n C60 cluster shell. Journal of the American Chemical Society. 2008, 130 (28), 8890-8891.
    [23] Lee, H.-J.; Kim, D.-Y.; Yoo, J.-S.; Bang, J.-W.; Kim, S.-J.; Park, S.-M., Anchoring cadmium chalcogenide quantum dots (QDs) onto stable oxide semiconductors for QD sensitized solar cells. Bulletin of the Korean Chemical Society. 2007, 28 (6), 953-958.
    [24] Plass, R.; Pelet, S.; Krueger, J.; Grätzel, M.; Bach, U., Quantum dot sensitization of organic− inorganic hybrid solar cells. The Journal of Physical Chemistry B. 2002, 106 (31), 7578-7580.
    [25] Parsi Benehkohal, N.; González-Pedro, V.; Boix, P. P.; Chavhan, S.; Tena-Zaera, R.; Demopoulos, G. P.; Mora-Seró, I., Colloidal PbS and PbSeS quantum dot sensitized solar cells prepared by electrophoretic deposition. The Journal of Physical Chemistry C. 2012, 116 (31), 16391-16397.
    [26] Santra, P. K.; Kamat, P. V., Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides. J Am Chem Soc. 2013, 135 (2), 877-85.
    [27] Pan, Z.; Zhao, K.; Wang, J.; Zhang, H.; Feng, Y.; Zhong, X., Near Infrared Absorption of CdSexTe1–x Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability. ACS Nano. 2013, 7 (6), 5215-5222.
    [28] Li, T.-L.; Lee, Y.-L.; Teng, H., High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure. Energy Environ. Sci. 2012, 5 (1), 5315-5324.
    [29] Kuo, K.-T.; Liu, D.-M.; Chen, S.-Y.; Lin, C.-C., Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency. Journal of Materials Chemistry. 2009, 19 (37), 6780-6788.
    [30] Li, W.; Pan, Z.; Zhong, X., CuInSe2 and CuInSe2–ZnS based high efficiency “green” quantum dot sensitized solar cells. Journal of Materials Chemistry A. 2015, 3 (4), 1649-1655.
    [31] Kouhnavard, M.; Ikeda, S.; Ludin, N. A.; Ahmad Khairudin, N. B.; Ghaffari, B. V.; Mat-Teridi, M. A.; Ibrahim, M. A.; Sepeai, S.; Sopian, K., A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renewable and Sustainable Energy Reviews. 2014, 37, 397-407.
    [32] De-Hua, Z. H. U.; Rong, Z.; Yu, C. A. O.; Zhi-Hui, P.; Ai-Xin, F.; Wei-Dong, X.; Jia-Long, Z., Size-Dependent Electron Injection and Photoelectronic Properties of CuInS2 Quantum Dot Sensitized Solar Cells. Acta Physico-Chimica Sinica. 2014, 30 (10), 1861-1866.
    [33] McDaniel, H.; Fuke, N.; Pietryga, J. M.; Klimov, V. I., Engineered CuInSexS2–x Quantum Dots for Sensitized Solar Cells. The Journal of Physical Chemistry Letters. 2013, 4 (3), 355-361.
    [34] Kim, J.-Y.; Yang, J.; Yu, J. H.; Baek, W.; Lee, C.-H.; Son, H. J.; Hyeon, T.; Ko, M. J., Highly Efficient Copper–Indium–Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers. ACS Nano. 2015, 9 (11), 11286-11295.
    [35] Peng, W.; Du, J.; Pan, Z.; Nakazawa, N.; Sun, J.; Du, Z.; Shen, G.; Yu, J.; Hu, J. S.; Shen, Q.; Zhong, X., Alloying Strategy in Cu-In-Ga-Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells. ACS Appl Mater Interfaces. 2017, 9 (6), 5328-5336.
    [36] Du, J.; Du, Z.; Hu, J. S.; Pan, Z.; Shen, Q.; Sun, J.; Long, D.; Dong, H.; Sun, L.; Zhong, X.; Wan, L. J., Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%. J Am Chem Soc. 2016, 138 (12), 4201-9.
    [37] Song, H.; Lin, Y.; Zhou, M.; Rao, H.; Pan, Z.; Zhong, X., Zn-Cu-In-S-Se Quinary "Green" Alloyed Quantum-Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4. Angew Chem Int Ed Engl. 2021, 60 (11), 6137-6144.
    [38] Wang, G.; Wei, H.; Shi, J.; Xu, Y.; Wu, H.; Luo, Y.; Li, D.; Meng, Q., Significantly enhanced energy conversion efficiency of CuInS2 quantum dot sensitized solar cells by controlling surface defects. Nano Energy. 2017, 35, 17-25.
    [39] Hachiya, S.; Shen, Q.; Toyoda, T., Effect of ZnS coatings on the enhancement of the photovoltaic properties of PbS quantum dot-sensitized solar cells. J Appl Phys. 2012, 111 (10), 104315.
    [40] Subramanian, A.; Punnoose, D.; Rao, S. S.; Varma, C. V. T.; Naresh, B.; Raman, V.; Kim, H. J., Improved photovoltaic performance of quantum dot-sensitized solar cells using multi-layered semiconductors with the effect of a ZnSe passivation layer. New J Chem. 2017, 41 (13), 5942-5949.
    [41] Abate, M. A.; Chang, J.-Y., Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture. Solar Energy Materials and Solar Cells. 2018, 182, 37-44.
    [42] Hwang, I.; Yong, K., Counter Electrodes for Quantum‐Dot‐Sensitized Solar Cells. ChemElectroChem. 2015, 2 (5), 634-653.
    [43] Allouche, N. K.; Ben Nasr, T.; Guasch, C.; Turki, N. K., Optimization of the synthesis and characterizations of chemical bath deposited Cu2S thin films. Comptes Rendus Chimie. 2010, 13 (11), 1364-1369.
    [44] Ye, M.; Chen, C.; Zhang, N.; Wen, X.; Guo, W.; Lin, C., Quantum‐Dot Sensitized Solar Cells Employing Hierarchical Cu2S Microspheres Wrapped by Reduced Graphene Oxide Nanosheets as Effective Counter Electrodes. Advanced Energy Materials. 2014, 4 (9), 1301564.
    [45] Choi, H. M.; Ji, I. A.; Bang, J. H., Metal selenides as a new class of electrocatalysts for quantum dot-sensitized solar cells: a tale of Cu1. 8Se and PbSe. ACS applied materials & interfaces. 2014, 6 (4), 2335-2343.
    [46] Shi, Y.; Yang, B.; Guo, X.; Wu, X.; Pang, H., Copper sulfides and their composites for high-performance rechargeable batteries. Materials Today Chemistry. 2022, 23, 100675.
    [47] Rasal, A. S.; Lee, T. Y.; Kao, P. Y.; Gatechew, G.; Wibrianto, A.; Dirersa, W. B.; Ghule, A. V.; Chang, J. Y., Composition, Morphology, and Interface Engineering of 3D Cauliflower‐Like Porous Carbon‐Wrapped Metal Chalcogenides as Advanced Electrocatalysts for Quantum Dot‐Sensitized Solar Cells. Small. 2022, 2202133.
    [48] Sapp, S. A.; Elliott, C. M.; Contado, C.; Caramori, S.; Bignozzi, C. A., Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells. Journal of the American Chemical Society. 2002, 124 (37), 11215-11222.
    [49] Li, L.; Yang, X.; Gao, J.; Tian, H.; Zhao, J.; Hagfeldt, A.; Sun, L., Highly Efficient CdS Quantum Dot-Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte. Journal of the American Chemical Society. 2011, 133 (22), 8458-8460.
    [50] Lee, Y.-L.; Chang, C.-H., Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells. Journal of Power Sources. 2008, 185 (1), 584-588.
    [51] Du, Z.; Chen, M.; Yin, F.; Jiang, H.; Wang, J.; Tang, J., Synergistic combination of TiO2-sol interconnecting-modified photoanode with alginate hydrogel-assisted electrolyte for quantum dots sensitized solar cells. Solar Energy. 2021, 215, 189-197.
    [52] Samadpour, M.; Gimenez, S.; Boix, P. P.; Shen, Q.; Calvo, M. E.; Taghavinia, N.; Zad, A. I.; Toyoda, T.; Miguez, H.; Mora-Sero, I., Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells. Electrochimica Acta. 2012, 75, 139-147.
    [53] Emin, S.; Singh, S. P.; Han, L. Y.; Satoh, N.; Islam, A., Colloidal quantum dot solar cells. Solar Energy. 2011, 85 (6), 1264-1282.
    [54] Šimurda, M.; Němec, P.; Formánek, P.; Němec, I.; Němcová, Y.; Malý, P., Morphology of CdSe films prepared by chemical bath deposition: The role of substrate. Thin Solid Films. 2006, 511-512, 71-75.
    [55] Pathan, H. M.; Lokhande, C. D., Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bulletin of Materials Science. 2004, 27 (2), 85-111.
    [56] Rosiles-Perez, C.; Cerdán-Pasarán, A.; Sidhik, S.; Esparza, D.; López-Luke, T.; de la Rosa, E., Improved performance of CdS quantum dot sensitized solar cell by solvent modified SILAR approach. Solar Energy. 2018, 174, 240-247.
    [57] Carey, G. H.; Abdelhady, A. L.; Ning, Z.; Thon, S. M.; Bakr, O. M.; Sargent, E. H., Colloidal Quantum Dot Solar Cells. Chem Rev. 2015, 115 (23), 12732-63.
    [58] Yang, Y. A.; Wu, H.; Williams, K. R.; Cao, Y. C., Synthesis of CdSe and CdTe Nanocrystals without Precursor Injection. Angewandte Chemie. 2005, 117 (41), 6870-6873.
    [59] Aboulaich, A.; Billaud, D.; Abyan, M.; Balan, L.; Gaumet, J.-J.; Medjadhi, G.; Ghanbaja, J.; Schneider, R., One-Pot Noninjection Route to CdS Quantum Dots via Hydrothermal Synthesis. ACS Applied Materials & Interfaces. 2012, 4 (5), 2561-2569.
    [60] Kappe, C. O., My Twenty Years in Microwave Chemistry: From Kitchen Ovens to Microwaves that aren't Microwaves. The Chemical Record. 2019, 19 (1), 15-39.
    [61] Gimenez, S.; Mora-Sero, I.; Macor, L.; Guijarro, N.; Lana-Villarreal, T.; Gomez, R.; Diguna, L. J.; Shen, Q.; Toyoda, T.; Bisquert, J., Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology. 2009, 20 (29), 295204.
    [62] Santra, P. K.; Nair, P. V.; George Thomas, K.; Kamat, P. V., CuInS2-Sensitized Quantum Dot Solar Cell. Electrophoretic Deposition, Excited-State Dynamics, and Photovoltaic Performance. The Journal of Physical Chemistry Letters. 2013, 4 (5), 722-729.
    [63] Salant, A.; Shalom, M.; Hod, I.; Faust, A.; Zaban, A.; Banin, U., Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition. ACS Nano. 2010, 4 (10), 5962-5968.
    [64] Watson, D. F., Linker-Assisted Assembly and Interfacial Electron-Transfer Reactivity of Quantum Dot−Substrate Architectures. The Journal of Physical Chemistry Letters. 2010, 1 (15), 2299-2309.
    [65] Bai, B.; Kou, D.; Zhou, W.; Zhou, Z.; Tian, Q.; Meng, Y.; Wu, S., Quaternary Cu2ZnSnS4 quantum dot-sensitized solar cells: Synthesis, passivation and ligand exchange. Journal of Power Sources. 2016, 318, 35-40.
    [66] Yang, J.; Oshima, T.; Yindeesuk, W.; Pan, Z.; Zhong, X.; Shen, Q., Influence of linker molecules on interfacial electron transfer and photovoltaic performance of quantum dot sensitized solar cells. J. Mater. Chem. A. 2014, 2 (48), 20882-20888.
    [67] Yu, L.; Li, Z.; Song, H., The influence of linker molecule on photovoltaic performance of CdS quantum dots sensitized translucent TiO2 nanotube solar cells. Journal of Materials Science: Materials in Electronics. 2017, 28 (3), 2867-2876.
    [68] Aldana, J.; Wang, Y. A.; Peng, X., Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols. Journal of the American Chemical Society. 2001, 123 (36), 8844-8850.
    [69] Chang, J. Y.; Li, C. H.; Chiang, Y. H.; Chen, C. H.; Li, P. N., Toward the Facile and Ecofriendly Fabrication of Quantum Dot-Sensitized Solar Cells via Thiol Coadsorbent Assistance. ACS Appl Mater Interfaces. 2016, 8 (29), 18878-90.
    [70] Firoozi, N.; Dehghani, H.; Afrooz, M., Cobalt-doped cadmium sulfide nanoparticles as efficient strategy to enhance performance of quantum dot sensitized solar cells. Journal of Power Sources. 2015, 278, 98-103.
    [71] Du, Z.; Artemyev, M.; Wang, J.; Tang, J., Performance improvement strategies for quantum dot-sensitized solar cells: a review. Journal of Materials Chemistry A. 2019, 7 (6), 2464-2489.
    [72] Wang, J.; Li, Y.; Shen, Q.; Izuishi, T.; Pan, Z.; Zhao, K.; Zhong, X., Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%. Journal of Materials Chemistry A. 2016, 4 (3), 877-886.
    [73] Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B., Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chemical reviews. 1999, 99 (9), 2293-2352.
    [74] Zalas, M., Gadolinium-modified titanium oxide materials for photoenergy applications: a review. Journal of Rare Earths. 2014, 32 (6), 487-495.
    [75] Xu, H.; Wu, C.; Li, H.; Chu, J.; Sun, G.; Xu, Y.; Yan, Y., Synthesis, characterization and photocatalytic activities of rare earth-loaded BiVO4 catalysts. Applied Surface Science. 2009, 256 (3), 597-602.
    [76] Reza Amani-Ghadim, A.; Mohammad-Gholipour-Rezaei, E.; Bayat, F.; Agbolaghi, S.; Khodam, F., Enhancement in photovoltaic properties of exciplex quantum dot sensitized solar cells via gadolinium doping and formation of type II Core/Shell (Gd-doped CdS@CdSe) structure. Solar Energy. 2022, 231, 402-413.
    [77] Rühle, S.; Shalom, M.; Zaban, A., Quantum-Dot-Sensitized Solar Cells. ChemPhysChem. 2010, 11 (11), 2290-2304.
    [78] Santra, P. K.; Kamat, P. V., Tandem-Layered Quantum Dot Solar Cells: Tuning the Photovoltaic Response with Luminescent Ternary Cadmium Chalcogenides. Journal of the American Chemical Society. 2013, 135 (2), 877-885.
    [79] Wang, W.; Feng, W.; Du, J.; Xue, W.; Zhang, L.; Zhao, L.; Li, Y.; Zhong, X., Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12%. Advanced Materials. 2018, 30 (11), 1705746.
    [80] Zhang, D.; Zhang, S.; Fang, Y.; Xie, D.; Zhou, X.; Lin, Y., Effect of linkers with different chemical structures on photovoltaic performance of CdSe quantum dot-sensitized solar cells. Electrochimica Acta. 2021, 367.
    [81] Liji Sobhana, S. S.; Vimala Devi, M.; Sastry, T. P.; Mandal, A. B., CdS quantum dots for measurement of the size-dependent optical properties of thiol capping. Journal of Nanoparticle Research. 2010, 13 (4), 1747-1757.
    [82] Jara, D. H.; Yoon, S. J.; Stamplecoskie, K. G.; Kamat, P. V., Size-Dependent Photovoltaic Performance of CuInS2 Quantum Dot-Sensitized Solar Cells. Chemistry of Materials. 2014, 26 (24), 7221-7228.
    [83] Pan, Z.; Rao, H.; Mora-Sero, I.; Bisquert, J.; Zhong, X., Quantum dot-sensitized solar cells. Chem Soc Rev. 2018, 47 (20), 7659-7702.
    [84] Jun, H. K.; Careem, M. A.; Arof, A. K., Quantum dot-sensitized solar cells—perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers. Renewable and Sustainable Energy Reviews. 2013, 22, 148-167.
    [85] Margraf, J. T.; Ruland, A.; Sgobba, V.; Guldi, D. M.; Clark, T., Quantum-dot-sensitized solar cells: understanding linker molecules through theory and experiment. Langmuir. 2013, 29 (7), 2434-8.
    [86] Huang, P.; Xu, S.; Zhang, M.; Zhong, W.; Xiao, Z.; Luo, Y., Modulation doping of absorbent cotton derived carbon dots for quantum dot-sensitized solar cells. Physical Chemistry Chemical Physics. 2019, 21 (47), 26133-26145.
    [87] Chiang, Y.-H.; Lin, K.-Y.; Chen, Y.-H.; Waki, K.; Abate, M. A.; Jiang, J.-C.; Chang, J.-Y., Aqueous solution-processed off-stoichiometric Cu–In–S QDs and their application in quantum dot-sensitized solar cells. Journal of Materials Chemistry A. 2018, 6 (20), 9629-9641.
    [88] Wang, W.; Zhao, L.; Wang, Y.; Xue, W.; He, F.; Xie, Y.; Li, Y., Facile Secondary Deposition for Improving Quantum Dot Loading in Fabricating Quantum Dot Solar Cells. Journal of the American Chemical Society. 2019, 141 (10), 4300-4307.
    [89] Ananthakumar, S.; Balaji, D.; Ram Kumar, J.; Moorthy Babu, S., Role of co-sensitization in dye-sensitized and quantum dot-sensitized solar cells. SN Applied Sciences. 2019, 1 (2).
    [90] Wang, W.; Rao, H.; Fang, W.; Zhang, H.; Zhou, M.; Pan, Z.; Zhong, X., Enhancing Loading Amount and Performance of Quantum-Dot-Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots from Bicomponent Solvents. The Journal of Physical Chemistry Letters. 2019, 10 (2), 229-237.
    [91] Zhang, L.; Pan, Z.; Wang, W.; Du, J.; Ren, Z.; Shen, Q.; Zhong, X., Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency. J. Mater. Chem. A. 2017, 5 (40), 21442-21451.
    [92] Chen, B.; Zhong, H.; Zhang, W.; Tan, Z. A.; Li, Y.; Yu, C.; Zhai, T.; Bando, Y.; Yang, S.; Zou, B., Highly Emissive and Color-Tunable CuInS2-Based Colloidal Semiconductor Nanocrystals: Off-Stoichiometry Effects and Improved Electroluminescence Performance. Advanced Functional Materials. 2012, 22 (10), 2081-2088.
    [93] Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; Chou, K. W.; Fischer, A.; Amassian, A.; Asbury, J. B.; Sargent, E. H., Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat Mater. 2011, 10 (10), 765-71.
    [94] Li, Y.; Wu, H.; Qi, W.; Zhou, X.; Li, J.; Cheng, J.; Zhao, Y.; Li, Y.; Zhang, X., Passivation of defects in perovskite solar cell: From a chemistry point of view. Nano Energy. 2020, 77.
    [95] Zhang, D.; Yoshida, T.; Oekermann, T.; Furuta, K.; Minoura, H., Room‐temperature synthesis of porous nanoparticulate TiO2 films for flexible dye‐sensitized solar cells. Advanced Functional Materials. 2006, 16 (9), 1228-1234.
    [96] Xin, X.; Liu, H.-Y.; Ye, M.; Lin, Z., Semiconductor hierarchically structured flower-like clusters for dye-sensitized solar cells with nearly 100% charge collection efficiency. Nanoscale. 2013, 5 (22), 11220-11226.

    無法下載圖示 全文公開日期 2025/08/18 (校內網路)
    全文公開日期 2025/08/18 (校外網路)
    全文公開日期 2025/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE