簡易檢索 / 詳目顯示

研究生: 彭定宏
Ding-Hong Peng
論文名稱: 探討不同可見光觸媒對新型太陽能電池效率之影響
Effect of Various Visible-Light Photocatalysts on Efficiency of New Solar Cell System
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 162
中文關鍵詞: 光觸媒可見光驅動太陽能電池
外文關鍵詞: photocatalysts, visible light driven, solar energy
相關次數: 點閱:185下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在探討對於已開發成功的新型太陽能電池(new solar cell, NSC)系統模型,使用不同可見光觸媒材料,以提升其系統效率。本研究針對NSC系統的光觸媒端(solar cell part, SCP)及觸媒端(fuel cell part, FCP)進行改質。光觸媒端方面,所使用的可見光觸媒材料包含經過不同熱處理溫度及氣氛的熱還原氧化石墨烯(reduced graphene oxide, rGO)、用硼氫化鈉還原的Ni / GO以及光沉積法製備的共觸媒Pt / WO3。其中,rGO光觸媒材料是藉由修飾Hummers法製備而成的氧化石墨烯(graphene oxide, GO)。觸媒端方面,改變白金濺鍍在FTO導電玻璃上的面積,降低系統電化學阻抗以改善其效率。
    光觸媒材料經由可見光照射,會產生光生電子電洞對。其中光電子與電解質啟動光電化學還原反應;電洞則與電解質發生光電化學氧化反應,最後得以發電。經由恆電位儀量測NSC系統的結果,現階段以rGO_PtWO3_Pt II_T200Ar系統數據為最佳,其測得之最大開環電壓(open circuit voltage, Voc)為0.35 V,其反應面積為0.56 cm2,故經計算得到的最大短路電流密度(short circuit current density, Jsc)為6.36 x 10-3 mA/cm2,填充因子(fill factor, FF)為22.1 %,光電轉換效率(photovoltaic convert efficiency, PCE)為4.92 x 10-4%。


    This study has been carried out to investigate the new solar cell (new solar sell, NSC) system model, using different visible-light photocatalyst materials to improve the efficiency of their systems. The NSC system consists of two parts i.e. photocatalyst part (solar cell part, SCP) and modified catalyst part (fuel cell part, FCP). Photocatalyst part part, all of the visible-light photocatalyst materials were synthesized using different heat treatments, different atmospheres during thermal reduction of graphene oxide (rGO), sodium borohydride reduction to reduce Ni precursor on graphene oxide (Ni/GO) and photo-deposition of catalysts prepared by Pt/WO3. In this study, rGO material was prepared via a modified Hummer's method from graphene oxide. Catalyst part side, variation of platinum sputtering area on the FTO conductive glass surface was studied in order to reduce the electrochemical resistance and increase the overall efficiency of the system.
    When visible light radiate on photocatalyst materials, electron-hole pairs will be generated. The photoelectron triggers the reduction reaction of the electrolyet and the holes participate in the photo-oxidation reaction which eventulay leads to electrical power generation. After investigation by potentio-static measurement amongst several test conditions the rGO_PtWO3_Pt II_T200_Ar gave the best result with maximum VOC (open circuit voltage) at 0.35 V observed under 0.56 cm2 reaction surface area. It is found that the Jsc (short circuit current density) and FF (fill factor) were 6.36 x 10-3 mA/cm2 and 22.1% respectively, while the PCE (photovoltaic convert efficiency) was 4.92 x 10-4 %.

    中文摘要 I Abstract〈英文摘要〉 II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 第二章 文獻回顧與理論基礎 7 2-1燃料電池簡介 7 2-1-1燃料電池基本原理 8 2-1-2燃料電池的材料與種類 10 2-2太陽能電池簡介 13 2-2-1太陽能電池基本原理 14 2-2-2太陽能電池的材料與種類 15 2-3光觸媒材料的簡介與應用 19 2-3-1光觸媒材料的特點與前景 19 2-3-2涵蓋可見光範圍之光觸媒以光催化驅動水分解 23 2-3-3石墨烯 ( Graphene )材料 25 2-3-3-1 石墨烯的簡介 25 2-3-3-2 氧化石墨烯 ( grapheme oxide )的半導體性質 30 2-3-4以光沉積法製備共觸媒 33 2-4 Z-Scheme System之光電化學反應 35 2-4-1自然界的光化學反應 35 2-4-2雙光子光觸媒系統 36 2-5新型太陽能電池 ( NSC ) 38 2-6研究動機與目的 44 第三章 實驗方法與步驟 45 3-1 實驗藥品 45 3-2 儀器設備 47 3-3實驗步驟 49 3-3-1以修飾Hummer’s 法製備GO產氫光觸媒 49 3-3-2 Ni / GO產氫光觸媒之合成 51 3-3-3 Pt / WO3產氧光觸媒之合成 53 3-3-4以rGO作為光陰極之製備 55 3-3-5以Ni / rGO作為光陰極之製備 57 3-3-6以Pt / WO3作為光陽極之製備 59 3-3-7以Pt作為陰陽極之製備 60 3-3-8 NSC系統的組裝 61 3-3-9 NSC系統的電性測試 64 3-4材料鑑定分析與儀器原理 66 3-4-1 X光繞射儀 ( XRD ) 66 3-4-2拉曼光譜儀 ( Raman spectra ) 70 3-4-3 紫外 – 可見光光譜儀 ( Ultraviolet – visible spectroscopy ) 74 3-4-4恆電位儀(Potentiostat ) 76 第四章 結果與討論 80 4-1光觸媒材料的鑑定與性質分析 80 4-1-1 GO之結構特性分析 80 4-1-1-1 GO於不同熱處理溫度之結構特性分析 80 4-1-1-2 GO於不同熱處理氣氛之結構特性分析 87 4-1-2 Pt / WO3之結構特性分析 92 4-1-2-1 Pt / WO3 於不同熱處理溫度之結構特性分析 92 4-1-2-2 Pt / WO3 於不同熱處理氣氛之結構特性分析 94 4-1-3 Ni / GO之結構特性分析 96 4-1-3-1 Ni / GO經300℃熱處理後之結構特性分析 96 4-2 NSC系統的光電化學性質測試 103 4-2-1以rGO和共觸媒Pt / WO3 分別作為產氫與產氧光觸媒端 ( SCP ) 之NSC系統的電性結果分析 103 4-2-1-1不同熱處理溫度之NSC系統的電性結果分析 104 4-2-1-2不同熱處理氣氛之NSC系統的電性結果分析 113 4-2-1-3不同觸媒端 ( FCP ) 對NSC系統電性測試的影響 121 4-2-2以Ni / rGO和共觸媒Pt / WO3分別作為產氫與產氧光觸媒端 ( SCP ) 之NSC系統的電性結果分析 127 4-2-3 與第一代NSC系統電性測試之比較 133 第五章 結論 136 第六章 未來與展望 141 第七章 參考文獻 142

    [1] energytechResources, "The Outlook for Energy: A View to 2030 " http://blog.roodo.com/oilinsight/archives/3633455.html, 2007.
    [2] C. G. I. Network, " Crude Oil Spot Prices," http://www.cngold.org/img_date/yuanyou.html, 2013.
    [3] T. H. C. M. I. (HCMI), "World Total Primary Energy Consumption by Region, Reference Case, 1990-2030," http://rainforests.mongabay.com/09-carbon_emissions.htm, 2005.
    [4] U.S. Energy Information Administration, "Primary energy production with renewable energy distribution.,," http://www.eia.gov/totalenergy/data/annual/perspectives.cfm, 2010.
    [5] U. S. D. o. Energy, "Renewable Energy as Share of Total Primary Energy Consumption, 2011," http://www.eia.gov/totalenergy/data/annual/perspectives.cfm, 2011.
    [6] B. C., H. Steele, and A. Heinzel, "Materials for fuel-cell technologies," Nature, vol. 414, pp. 345-352, 2001.
    [7] S. M. Haile, "Materials for fuel cells," Materials Today, vol. 6, pp. 24-29, 2003.
    [8] J. Larminie and A. Dicks, "Fuel Cell Systems Explained_Second Edition," 2003.
    [9] N. D. C. Network, "Popular Science Handbook," http://www.ndcnc.gov.cn/datalib/2004/Science/DL/DL-177512, 2011.
    [10] E. Becquerel, "Mémoire sur les effets électriques produits sous l'influence des rayons solaires," Comptes rendus de l'Académie des Sciences, pp. 561-567, 1839.
    [11] N. I. Corporation, "Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code," http://www.ni.com/white-paper/7230/en/, 2012.
    [12] S. C. CENTRAL, "The Sun's Energy," http://solarcellcentral.com/solar_page.html, 2010.
    [13] Okamoto K., Yamamoto Y., H. Tanaka, M. Tanaka, and A. Itaya, "Heterogeneous photocatalytic decomposition of phenol over TiO2 powder," Chemical Society of Japan, vol. 58, pp. 2015-2022, 1985.
    [14] S. F. Chen, M. Y. Jau, and Y. WuTau, "Environmental Science," vol. 17, pp. 33-35, 1996.
    [15] T. F. Jou, W. C. Jiang, and W. P. Liou, "Environmental Science," vol. 18, pp. 35-37, 1997.
    [16] Y. W. Chen, M. Y. Jau, and S. F. Chen, "Journal of Catalysis," vol. 18, pp. 345-347, 1997.
    [17] F. Y. Shen, M. Wu, and W. C. Li, "Journal of Catalysis," vol. 19, pp. 121-124, 1998.
    [18] S. P. Li, B. K. Shiu, and G. F. Liou, "Functional Materials," vol. 30, pp. 242-245, 1999.
    [19] Q. Zhang, L. Gao, and J. Guo, " Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis," Applied Catalysis B: Environmenta, vol. 26, pp. 207-215., 2000.
    [20] S. N. Frank and A. J. Bard, "Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders," Journal of Physical Chemistry,, vol. 81, pp. 1484-1488, 1977.
    [21] A. Kudo, "Photocatalyst materials for water splitting," Catalysis Surveys from Asia, vol. 7, pp. 31-38, 2003.
    [22] M. Anpo, N. Aikawa, S. Kodama, and Y. Kubokawa, "Photocatalytic hydrogenation of alkynes and alkenes with water over TiO2. Hydrogenation accompanied by bond fission," Journal of Physical Chemistry, vol. 88, pp. 2569-2572, 1984.
    [23] M. L. Trudeau and J. Y. Ying., " Nanocrystalline materials in catalysis and electrocatalysis: Structure tailoring and surface reactivity," Nanostructured Materials, vol. 7, pp. 245-258, 1996.
    [24] X. Lai, M. Walden, and D.W. Goodman, "Onset of catalytic Activity of Gold Clustania on Titania with the Appearance of Normetallic Properties," Science, vol. 281, pp. 1647-1650, 1998.
    [25] Maeda and Kazuhiko, "Z-Scheme Water Splitting Using Two Different Semiconductor Photocatalysts," ACS Catalysis, vol. 3, pp. 1486-1503, 2013.
    [26] P. D. Tran, L. H. Wong, J. Barber, and J. S. C. Loo, "Recent advances in hybrid photocatalysts for solar fuel production," Energy & Environmental Science, vol. 5, p. 5902, 2012.
    [27] K. Akihiko, "Photocatalyst materials for water splitting," Catalysis Surveys from Asia, vol. 7, pp. 31-38, 2003.
    [28] M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001.
    [29] S. Ikeda, A. Tanaka, K. Shinohara, M. Hara, J.N. Kondo, K.I. Maruya, et al., "Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb6O17," Microporous Materials, vol. 9, pp. 253-258, 1997.
    [30] W. Shangguan and A. Yoshida, "Influence of catalyst structure and modification on the photocatalytic production of hydrogen from water on mixed metal oxide," International Journal of Hydrogen Energy, vol. 24, pp. 425-431, 1999.
    [31] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, "C-60-Buck-minsterfullerence," Nature, vol. 162, p. 318, 1985.
    [32] S. Iijima, "Helical Microtubules of Grapgitic Carbon," Nature, vol. 56, p. 354, 1991.
    [33] Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, et al., "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, 2004.
    [34] A.K. Geim and K.S. Novoselov, "The rise of graphene.," Nature Materials, vol. 6, pp. 183-191, 2007.
    [35] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, "Graphene based materials: Past, present and future," Progress in Materials Science,, vol. 56, pp. 1178-1271, 2011.
    [36] A.K. Geim and K.S. Novoselov, "The rise of graphene," Nature Materials, vol. 3, pp. 183-191., 2007.
    [37] W. Gao, L.B. Alemany, L. Ci, and P.M. Ajayan, " New insights into the structure and reduction of graphite oxide.," Rice University, vol. 1, pp. 403-408, 2009.
    [38] A. Gupta, G. Chen, P. Joshi, S. Tadigadap, and P.C. Eklund, " Raman scattering from high-frequency phonons in supported n-graphene layer films," Nano Letters, vol. 6, pp. 2667-2673., 2006.
    [39] S. Park, K.S. Lee, G. Bozoklu, W. Cai, S. Binh, T. Nguyen, et al., "Graphene Oxide Papers Modified by Divalent Ions—Enhancing Mechanical Properties via Chemical Cross-Linking.," ACS Nano, vol. 2, pp. 572-578., 2008.
    [40] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett, G. Evmenenko, et al., "Preparation and characterization of graphene oxide paper. ," Nature,, vol. 448, pp. 457-60., 2007.
    [41] K.N. Kudin, G.E. Scuseria, B.I. Yakobson, and R. B, "C2F, BN, and C nanoshell elasticity from ab initio computations. Physical " Condensed Matter and Materials Physics, vol. 64, pp. 2354061-23540610, 2001.
    [42] A.A. Balandin, W. B. S. Ghosh, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, " Superior thermal conductivity of single-layer graphene," Nano Letters, vol. 8, pp. 902-907, 2008.
    [43] T.-F. Yeh, S.-J. Chen, C.-S. Yeh, and H. Teng, "Tuning the Electronic Structure of Graphite Oxide through Ammonia Treatment for Photocatalytic Generation of H2and O2from Water Splitting," The Journal of Physical Chemistry C, vol. 117, pp. 6516-6524, 2013.
    [44] T.-F. Yeh, F.-F. Chan, C.-T. Hsieh, and H. Teng, "Graphite Oxide with Different Oxygenated Levels for Hydrogen and Oxygen Production from Water under Illumination: The Band Positions of Graphite Oxide," The Journal of Physical Chemistry C, vol. 115, pp. 22587-22597, 2011.
    [45] S. Bensaid, G. Centi, E. Garrone, S. Perathoner, and G. Saracco, "Towards artificial leaves for solar hydrogen and fuels from carbon dioxide," ChemSusChem, vol. 5, pp. 500-521, 2012.
    [46] T. F. Yeh, "Graphite Oxide with Different Oxygenated Levels for Hydrogen and Oxygen Production from Water under Illumination," Department of Chemical Engineering, National Cheng Kung University, 2011.
    [47] 黃文慶, "Research and Module Design of Visible-Light Photocatalyst Driven New Solar Cell System," National Taiwan University of Science and Technology - Chemical Engineering, 2012.

    QR CODE