簡易檢索 / 詳目顯示

研究生: 黃英豪
Ying-hau Huang
論文名稱: 製備氧化鋅/二氧化鈦複合型光觸媒進行水溶液中光催化氧化還原反應之研究
Preparation of ZnO/TiO2 Coupled Photocatalyst for the Photocatalytic Redox Reactions in Aqueous Solutions
指導教授: 顧 洋
Young Ku
口試委員: 蔣本基
Pen-chi Chiang
曾堯宣
Yao-hsuan Tseng
郭俞麟
Yu-lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 120
中文關鍵詞: 複合型光觸媒氧化鋅/二氧化鈦顆粒間電子傳遞程序
外文關鍵詞: Coupled photocatalyst, ZnO/TiO2, IPET process
相關次數: 點閱:142下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的為製備氧化鋅/二氧化鈦複合型光觸媒提升水溶液中光催化氧化還原反應之效率。在本研究中,將市售二氧化鈦(Degussa P-25)光觸媒分別以濕式含浸法與液相合成法兩種方式製備氧化鋅/二氧化鈦複合型光觸媒,並利用B.E.T.比表面積、SEM、UV-vis DRS、XRD、XPS、螢光光譜儀以及界達電位(Zeta potential)等儀器進行氧化鋅/二氧化鈦複合型光觸媒之物性分析與探討。同時,藉由紫外光/複合型光觸媒程序分別進行光催化氧化酸性紅色四號染料溶液與光催化還原含重鉻酸根溶液,探討氧化鋅/二氧化鈦中複合氧化鋅劑量多寡以及複合型光觸媒鍛燒溫度對其光催化氧化還原效率之影響。
    實驗結果顯示:以濕式含浸法相較於液相合成法所製得之複合型光觸媒具有較高的光催化氧化還原效率;製備複合型光觸媒最佳化條件方面指出:複合氧化鋅劑量為2莫爾百分比與觸媒鍛燒溫度為400℃時所製備之氧化鋅/二氧化鈦複合型光觸媒具有最佳的光催化氧化還原效率表現。此外,氧化鋅/二氧化鈦複合型光觸媒與單純二氧化鈦光觸媒做比較發現,氧化鋅/二氧化鈦複合型光觸媒不但具有較高的光催化氧化效率且同時有效大幅提升光催化還原效率,而此光催化機制可藉由過去學者所提出之顆粒間電子傳遞(IPET)程序成功地加以描述。


    ZnO/TiO2 coupled photocatalysts were prepared by wetness impregnation (WI) and liquid synthesis (LS) methods in this study. The prepared ZnO/TiO2 coupled photocatalysts were characterized by BET, SEM, UV-vis DRS, XRD, XPS, PL spectra and Zeta potential analyses. The photocatalytic redox efficiency of prepared ZnO/TiO2 was evaluated by photocatalytic oxidation of Acid Red 4 (AR4) and photocatalytic reduction of Cr(VI) in aqueous solutions under UV-365nm illumination. The effects of coupled ZnO dosages and calcined temperatures of ZnO/TiO2 for the photocatalytic redox efficiency were investigated.
    The experimental results showed that there were higher photocatalytic redox efficiency with ZnO/TiO2 prepared by WI method than that prepared by LS method not only for the photocatalytic oxidation of AR4 but also for the photocatalytic reduction of Cr(VI) processes. ZnO/TiO2 coupled photocatalysts prepared by WI method in this study substantially promoted the photocatalytic reduction efficiency, but imperceptibly influenced the photocatalytic oxidation efficiency compared with pure TiO2 P-25. The optimal coupled ZnO dosage was 2.0 mol% in ZnO/TiO2 and the optimal calcined temperature of ZnO/TiO2 was 400℃. The photocatalytic mechanisms of photocatalytic redox efficiency of ZnO/TiO2 can be explained by interparticle electron transfer (IPET) process.

    Chapter 1 Introduction Chapter 2 Literatures Review 2.1 Photocatalysts and Photocatalysis 2.1.1 Properties of TiO2 2.1.2 Properties of ZnO 2.2 Modification of Photocatalyst 2.2.1 Coupled Photocatalysts 2.2.2 Metal-Doped Photocatalysts 2.2.3 Non-Metal-Doped Photocatalysts 2.3 Preparation of Coupled Photocatalysts 2.3.1 Incipient Wetness Impregnation 2.3.2 Solid State Reaction 2.3.3 Sol-Gel Process 2.3.4 Spray Pyrolysis 2.4 ZnO/TiO2 Coupled Photocatalyst 2.5 Factors Affecting Coupled Photocatalytic Process 2.5.1 Proportions of coupled dopant 2.5.2 Effect of Calcined Temperature Chapter 3 Experimental Procedures and Apparatus 3.1 Chemicals 3.2 Experimental Instruments and Apparatus 3.3 Experimental Procedures 3.3.1 Experimental Framework 3.3.2 Preparation of ZnO/TiO2 coupled photocatalyst 3.4 Characterizations of Photocatalyst 3.4.1 X-ray Diffraction (XRD) Analysis 3.4.2 Scanning Electron Microscope (SEM) Analysis 3.4.3 BET Specific Surface Area Analysis 3.4.4 UV-vis Diffuse Reflectance Spectra of Photocatalysts 3.4.5 Zeta Potential Analysis 3.4.6 XPS Results of Photocatalysts 3.4.7 Photoluminescence (PL) Spectroscopy Analysis 3.5 Background Experiments Chapter 4 Results and Discussion 4.1 Characterization of ZnO/TiO2 Coupled Photocatalyst 4.1.1 Characterization of ZnO/TiO2 Prepared by LS and WI Methods 4.1.1.1 X-ray Diffraction (XRD) Analysis 4.1.1.2 Scanning Electron Microscopy (SEM) Analysis 4.1.1.3 BET Specific Surface Area Analysis 4.1.1.4 UV-vis Diffuse Reflectance Spectra (UV-vis DRS) 4.1.1.5 Zeta Potential Analysis 4.1.2 Characteristics of ZnO/TiO2 Containing Various ZnO Dosages 4.1.2.1 X-ray Diffraction (XRD) Analysis 4.1.2.2 Scanning Electron Microscopy (SEM) Analysis 4.1.2.3 X-ray Photoelectron Spectroscopy (XPS) 4.1.2.4 Photoluminescence (PL) Spectroscopy 4.1.3 Characteristics of ZnO/TiO2 Prepared at Various Calcined Temperatures 4.1.3.1 X-ray Diffraction (XRD) Analysis 4.1.3.2 Scanning Electron Microscopy (SEM) Analysis 4.1.3.3 BET Specific Surface Area Analysis 4.2 Photocatalytic Oxidation for Acid Red 4 in Aqueous Solutions Using ZnO/TiO2 4.2.1 Effect of Preparation Methods of ZnO/TiO2 4.2.2 Effect of Coupled ZnO Dosages of ZnO/TiO2 4.2.3 Effect of Calcined Temperatures of ZnO/TiO2 4.3 Photocatalytic Reduction for Cr (VI) in Aqueous Solutions Using ZnO/TiO2 4.3.1 Effect of Preparation Methods of ZnO/TiO2 4.3.2 Effect of Coupled ZnO Dosages of ZnO/TiO2 4.3.3 Effect of Calcined Temperatures of ZnO/TiO2 Chapter 5 Conclusions References

    [1] Ahonen, P., “Aerosol Production and Crystallization of Titanium Dioxide from Metal Alkoxide Droplets,” Espoo 2001. Technical Research Centre of Finland, VTT Publications, Vol. 439, 55 p. + app. 62 p. (2001)
    [2] Ananpattarachai, J., P. Kajitvichyanukul and S. Seraphin, “Visible Light Absorption Ability and Photocatalytic Oxidation Activity of Various Interstitial N-doped TiO2 Prepared from Different Nitrogen Dopants,” J. Hazard. Mater., Vol. 168, pp. 253-261 (2009)
    [3] Asahi, R., T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science, Vol. 293, pp. 269 (2001)
    [4] Brunauer, S., P. H., Emmett and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., Vol. 60 (2), pp. 309-319 (1938)
    [5] Cai, T.J., M. Yue, X.W. Wang and Q. Deng, “Preparation, Characterization, and Photocatalytic Performance of NdPW12O40/TiO2 Composite Catalyst,” Chin. J. Catal., Vol. 28, pp. 0–16 (2007)
    [6] Carp, O., C. L. Huisman and A. Reller, “Photoinduced Reactivity of Titanium Dioxide,” Prog. Solid State Chem., Vol. 32, pp. 33–177 (2004)
    [7] Černigoj, U., U. L. Štangar and P. Trebše, “Degradation of Neonicotinoid Insecticides by Different Advanced Oxidation Processes and Studying the Effect of Ozone on TiO2 Photocatalysis,” Appl. Catal., B, Vol 75, pp. 229-238 (2007)
    [8] Chang, Y., Y. Chang, I. Chen, G. Chen, Y. Chai, S. Wu and T. Fang, “The Structure and Properties of Zinc Titanate Doped with Strontium,” J. Alloys Compd., Vol. 354, pp. 303-309 (2003)
    [9] Chavadej, S., P. Phuaphromyod, E. Gulari, P. Rangsunvigit and T. Sreethawong, “Photocatalytic Degradation of 2-propanol by Using Pt/TiO2 Prepared by Microemulsion Technique,” Chem. Eng. J., Vol. 137, pp.489-495 (2008)
    [10] Chen, S.F., S.J. Zhang, W. Liu and W. Zhao, “Preparation and Activity Evaluation of p–n Junction Photocatalyst NiO/TiO2,” J. Haz. Mater., Vol. 155, pp. 320–326 (2008)
    [11] Daneshvar, N., D. Salari and A.R. Khataee, “Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as an Alternative Catalyst to TiO2,” J. Photochem. Photobiol., A, Vol 162, pp. 317-322 (2004)
    [12] Dindar, B. and S. Içli, “Unusual Photoreactivity of Zinc Oxide Irradiated by Concentrated Sunlight,” J. Photochem. Photobiol., A, Vol. 140, pp. 263–268 (2001)
    [13] Doucet, N., F. Bocquillon, O. Zahraa and M. Bouchy, “Kinetics of Photocatalytic VOCs Abatement in a Standardized Reactor,” Chemosphere, Vol. 65, pp. 1188-1196 (2006)
    [14] Dutta, P. K., A. K. Ray, V. K. Sharma and F. J. Millero, “Adsorption of Arsenate and Arsenite on Titanium Dioxide Suspensions,” J. Colloid Interface Sci., Vol. 278, pp. 270-275 (2004)
    [15] Fernández-Ibáñez, P., F. J. de las Nieves and S. Malato, “Titanium Dioxide/Electrolyte Solution Interface: Electron Transfer Phenomena,” J. Colloid Interface Sci., Vol. 277, pp. 510-516 (2000)
    [16] Fresno, F., M. D. Herna’ndez-Alonso, T. David, J. M. Coronado and J. Soria, “Photocatalytic Degradation of Toluene over Doped and Coupled (Ti,M)O2 (M = Sn or Zr) Nanocrystalline Oxides: Influence of the Heteroatom Distribution on Deactivation,” Appl. Catal., B, Vol. 84, pp. 598-606 (2008)
    [17] Grätzel M., “Photoelectrochemical Cells,” Nature, Vol. 414, pp. 338 (2001)
    [18] Hernández-Alonso, M. D., I. Tejedor-Tejedor, J. M. Coronado, J. Soria and M. A. Anderson, “Sol–gel Preparation of TiO2–ZrO2 Thin Films Supported on Glass Rings: Influence of Phase Composition on Photocatalytic Activity,” Thin Solid Films, Vol. 502, pp. 125-131 (2006)
    [19] Hoffmann, M. R., S. T. Martin, W. Choi and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., Vol. 95 (1), pp. 69–96 (1995)
    [20] Houšková, V., V. Štengl, S. Bakardjieva and N. Murafa, “Photoactive Materials Prepared by Homogeneous Hydrolysis with Thioacetamide: Part 2 — TiO2/ZnO Nanocomposites,” J. Phys. Chem. Solids, Vol. 69, pp. 1623–1631 (2008)
    [21] Houšková, V., V. Štengl, S. Bakardjieva, N. Murafa, A. Kalendová and F. Opluštil, “Nanostructure Materials for Destruction of Warfare Agents and Eco-toxins Prepared by Homogeneous Hydrolysis with Thioacetamide: Part 1—Zinc Oxide,” J. Phys. Chem. Solids, Vol. 68, pp. 716–720 (2007)
    [22] Hsiao, P., K.P. Wang, C.W. Cheng and H. Teng, “Nanocrystalline Anatase TiO2 Derived from a Titanate-directed Route for Dye-sensitized Solar Cells,” J. Photochem. Photobiol., A, Vol. 188, pp. 19-24 (2007)
    [23] Huang, Y., W. Ho, Z. Ai, X. Song, L. Zhang and S. Lee, “Aerosol-assisted Flow Synthesis of B-doped, Ni-doped and B–Ni-codoped TiO2 Solid and Hollow Microspheres for Photocatalytic Removal of NO,” Appl. Catal., B, Vol. 89, pp. 398-405 (2009)
    [24] Hwang, D.W., Lee, L.S., Li, W. and Oh, S.H., “Electronic Band Structure and Photocatalytic Activity of Ln2Ti2O7 (Ln = La, Pr, Nd),” J. Phys. Chem., B, Vol. 107, pp. 4963-4970 (2003)
    [25] Ismail, A. A., “Synthesis and Characterization of Y2O3/Fe2O3/TiO2 Nanoparticles by Sol–gel Method,” Appl. Catal., B, Vol. 58, pp. 115-121 (2005)
    [26] Jiang, Y., Y. Sun, H. Liu, F. Zhu and H. Yin, “Solar Photocatalytic Decolorization of C.I. Basic Blue 41 in an Aqueous Suspension of TiO2/ZnO,” Dyes Pigm., Vol 78, pp.77-83 (2008)
    [27] Kansal, S.K., M. Singh and D. Sud, “Studies on TiO2/ZnO Photocatalysed Degradation of Lignin,” J. Hazard. Mater., Vol. 153, pp. 412-417 (2008)
    [28] Kim, Y., J. Lee, H. Jeong, Y. Lee, M. H. Um, K. M. Jeong, M. K. Yeo, M. Kang, “Methyl Orange Removal over Zn-incorporated TiO2 Photo-catalyst,” J. Ind. Eng. Chem., Vol. 14, pp. 396-400 (2008)
    [29] Ku, Y., K. Y. Tseng and C. M. Ma, “Photocatalytic Decomposition of Gaseous Acetone Using TiO2 and Pt/TiO2 Catalysts,” Int. J. Chem. Kinet, Vol. 40 (4), pp. 209-216 (2008)
    [30] Li, F. B. and Li, X. Z., “The Enhancement of Photodegradation Efficiency Using Pt-TiO2 Catalyst,” Chemosphere, Vol. 48, pp.1103-1111 (2002)
    [31] Li, M., S.F. Zhou, Y.W. Zhang, G.Q. Chen and Z.L. Hong, “One-step Solvothermal Preparation of TiO2/C Composites and Their Visible-light Photocatalytic Activities,” Appl. Surf. Sci., Vol. 254, pp.3762-3766 (2008)
    [32] Li, X. Z. and F. B. Li, “Study of Au/Au3+-TiO2 Photocatalysts toward Visible Photooxidation for Water and Wastewater Treatment,” Environ. Sci. Technol., Vol. 35 (11), pp. 2381-2387 (2001)
    [33] Liao, S., H. Donggen, D. Yu, Y. Su and G. Yuan, “Preparation and Characterization of ZnO/TiO2, SO42−/ZnO/TiO2 Photocatalyst and Their Photocatalysis,” J. Photochem. Photobiol., A, Vol. 168, pp. 7–13 (2004)
    [34] Lizama, C., J. Freer, J. Baeza and H. D. Mansilla, “Optimized Photodegradation of Reactive Blue 19 on TiO2 and ZnO Suspensions,” Catal. Today, Vol. 76, pp. 235-246 (2002)
    [35] Marotti, R. E., P. Giorgi, G. Machado and E. A. Dalchiele, “Crystallite Size Dependence of Band Gap Energy for Electrodeposited ZnO Grown at Different Temperatures,” Sol. Energy Mater. Sol. Cells, Vol. 90, pp. 2356–2361 (2006)
    [36] Pal, B. and M. Sharon, “Enhanced Photocatalytic Activity of Highly Porous ZnO Thin Films Prepared by Sol–gel Process,” Mater. Chem. Phys., Vol. 76, pp. 82-87 (2002)
    [37] Periyat, P., K.V. Baiju, P. Mukundan, P.K. Pillai and K.G.K. Warrier, “High Temperature Stable Mesoporous Anatase TiO2 Photocatalyst Achieved by Silica Addition,” Appl. Catal., A, Vol. 349, pp. 13-19 (2008)
    [38] Ren, X., D. Han, D. Chen and F. Tang, “Large-scale Synthesis of Hexagonal Cone-shaped ZnO Nanoparticles with a Simple Route and Their Application to Photocatalytic Degradation,” Mater. Res. Bull., Vol. 42, pp. 807–813 (2007)
    [39] Rengifo-Herrera, J.A., K. Pierzchała, A. Sienkiewicz, L. Forrơ, J. Kiwi and C. Pulgarin, “Abatement of Organics and Escherichia Coli by N, S Co-doped TiO2 under UV and Visible Light. Implications of the Formation of Singlet Oxygen (1O2) under Visible Light,” Appl. Catal., B, Vol. 88, pp. 398-406 (2009)
    [40] Serpone, N., P. Maruthamuthu, P. Pichat, E. Pelizzetti and H. Hidaka, “Exploiting the Interparticle Electron Transfer Process in the Photocatalysed Oxidation of Phenol, 2-chlorophenol and Pentachlorophenol: Chemical Evidence for Electron and Hole Transfer between Coupled Semiconductors,” J. Photochem. Photobiol., A, Vol. 85, pp. 247-255 (1995)
    [41] Shifu, C., Z. Wei, L. Wei and Z. Sujuan, “Preparation, Characterization and Activity Evaluation of p-n Junction Photocatalyst p-ZnO/n-TiO2,” Applied Surface Science, Vol. 255, pp. 2478-2484 (2008)
    [42] So W. W., S. B. Park, K. J. Kim, C. H. Shin and S. J. Moon, “The Crystalline Phase Stability of Titania Particles Prepared at Room Temperature by The Sol-gel Method,” J. Mater. Sci., Vol. 36, pp. 4299-4305 (2001)
    [43] Starbova, K., V. Yordanova, D. Nihtianova, W. Hintz, J. Tomas and N. Starbov, “Excimer Laser Processing as A Tool for Photocatalytic Design of Sol–gel TiO2 Thin Films,” Appl. Surf. Sci., Vol. 254, pp.4044-4051 (2008)
    [44] Su, C., B.Y. Hong and C.M. Tseng, “Sol-gel Preparation and Photocatalysis of Titanium Dioxide,” Catal. Today, Vol. 96, pp.119-126 (2004)
    [45] Tian, B., C. Li, F. Gu, H. Jiang, Y. Hu and J. Zhang, “Flame Sprayed V-doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity under Visible Light Irradiation,” Chem. Eng. J., Vol. 151, pp. 220-227 (2009)
    [46] Topalov, A., D. Molnár-Gábor, B. Abramović, S. Korom and D. Peričin, “Photocatalytic Removal of the Insecticide Fenitrothion from Water Sensitized with TiO2,” J. Photochem. Photobiol., A, Vol. 160, pp.195-201 (2003)
    [47] Vergnieres, L., P. Odier, F. Weiss, C. E. Bruzek and J. M. Saugrain, “Epitaxial Thick Films by Spray Pyrolysis for Coated Conductors,” J. Eur. Ceram. Soc., Vol. 25 (12), pp. 2951–2954 (2005)
    [48] Wang, C., B. Xu, X. Wang and J. Zhao, “Preparation and Photocatalytic Activity of ZnO/TiO2/SnO2 Mixture,” J. Solid State Chem., Vol. 178, pp. 3500–3506 (2005)
    [49] Wang, H., Z. Wu, Y. Liu and Z. Sheng, “The Characterization of ZnO–anatase–rutile Three-component Semiconductor and Enhanced Photocatalytic Activity of Nitrogen Oxides,” J. Mol. Catal. A: Chem., Vol. 287, pp. 176-181 (2008)
    [50] Wang, J., Z. Jiang, L. Zhang, P. Kang, Y. Xie, Y. Lv, R. Xu and X. Zhang, “Sonocatalytic Degradation of Some Dyestuffs and Comparison of Catalytic Activities of Nano-sized TiO2, Nano-sized ZnO and Composite TiO2/ZnO Powders under Ultrasonic Irradiation,” Ultrasonics Sonochemistry, Vol. 16, pp. 225-231 (2009)
    [51] Wang, N., X. Li, Y. Wang, Y. Hou, X. Zou and G. Chen, “Synthesis of ZnO/TiO2 Nanotube Composite Film by a Two-step Route,” Mater. Lett., Vol. 62, pp. 3691-3693 (2008)
    [52] Wu, C. G., C. C. Chao and F. T. Kuo, “Enhancement of the Photo Catalytic Performance of TiO2 Catalysts via Transition Metal Modification,” Cata. Today, Vol. 97, pp. 103-112 (2004)
    [53] Xu, A.-W., Y. Gao and H.-Q. Liu, “The Preparation, Characterization, and Their Photocatalytic Activities of Rare-earth-doped TiO2 Nanoparticles,” J. Catal., Vol. 207, pp. 151-157 (2002)
    [54] Yang, J., D. Li, X. Wang, X. Yang and L. Lu, “Rapid Synthesis of Nanocrystalline TiO2/SnO2 Binary Oxides and Their Photoinduced Decomposition of Methyl Orange,” J. Solid State Chem., Vol. 165, pp. 193-198 (2002)
    [55] Yang, X., W. Dai, C. Guo, H. Chen, Y. Cao, H. Li, H. He, K. Fan, “Synthesis of Novel Core-shell Structured WO3/TiO2 Spheroids and Its Application in the Catalytic Oxidation of Cyclopentene to Glutaraldehyde by Aqueous H2O2,” J. Catal., Vol. 234, pp. 438-450 (2005)
    [56] Yu, J. C., J. Yu and J. Zhao, “Enhanced Photocatalytic Activity of Mesoporous and Ordinary TiO2 Thin Films by Sulfuric Acid Treatment,” Appl. Catal., B, Vol. 36, pp. 31-43 (2002)
    [57] Yu, J. C., W. K. Ho, J. G.. Yu, S. K. Hark and K. S. Iu, “Effect of Trifluoroacetic Acid Modification on Surface Microstructures and Photocatalytic Activity of Mesoporous TiO2 Thin Films,” Langmuir, Vol. 19, pp. 3889-3896 (2003)
    [58] Zhan, H., Chen, K. and Tian, H., “Photocatalytic Degradation of Acid Azo Dyes in Aqueous TiO2 Suspension II. The Effect of pH Values,” Dyes and Pigments, Vol. 37, No. 3, pp. 241-247 (1998)
    [59] Zhang, J., Y. Hu, M. Matsuoka, H. Yamashita, M. Minagawa, H. Hidaka and M. Anpo, “Relationship between the Local Structures of Titanium Oxide Photocatalysts and Their Reactivities in the Decomposition of NO,” J. Phys. Chem. B, Vol. 105 (35), pp. 8395-8398 (2001)
    [60] Zhang, J., Y. Wang, Z. Jin, Z. Wu and Z. Zhang, “Visible-light Photocatalytic Behavior of Two Different N-doped TiO2,” Appl. Surf. Sci., Vol. 254, pp.4462-4466 (2008)
    [61] Zhang, W., S. Zhu, Y. Li and F. Wang, “Photocatalytic Zn-doped TiO2 Films Prepared by DC Reactive Magnetron Sputtering,” Vacuum, Vol. 82, pp. 328-335 (2008)
    [62] Zhang, Z., Y. Yuan, Y. Fang, L. Liang, H. Ding and L. Jin, “Preparation of Photocatalytic Nano-ZnO/TiO2 Film and Application for Determination of Chemical Oxygen Demand,” Talanta, Vol. 73, pp.523-528, (2007)
    [63] Zou, J. J., B. Zhu, L. Wang, X. Zhang and Z. Mi, “Zn- and La-modified TiO2 Photocatalysts for the Isomerization of Norbornadiene to Quadricyclane,” J. Mol. Catal. A: Chem., Vol. 286, pp. 63-69 (2008)

    無法下載圖示 全文公開日期 2014/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE