簡易檢索 / 詳目顯示

研究生: 張謙維
Chien-wei Chang
論文名稱: 利用油墨網印法製備硒化銅銦鎵薄膜太陽能電池及其分析
Preparation and Analyses of CIGSe Thin Films Solar Cells with the Ink-Printing p-Type Absorption Layer
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 朱瑾
Jinn P. Chu
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 129
中文關鍵詞: 薄膜太陽能電池
外文關鍵詞: CIGSe
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,研究者紛紛進行CIGSe太陽能薄膜電池非真空製備的研究,非真空製備方法極多,但其薄膜緻密程度為決定光電轉換效率的關鍵性。
    本實驗利用油墨網印法製備銅銦鎵硒薄膜太陽能電池,以不同組成模式(CIGS、Cu2Se、In2Se3、Ga2Se3及Se)配製油墨,且固定薄膜比例為Cu0.8In0.7Ga0.3Se2,藉由適當的液相燒結的方式(一階段和兩階段)搭配不同的液相燒結溫度及冷壓與否對銅銦鎵硒吸收層之特性的影響進行探討,並且透過FE-SEM、XRD及EDS分析銅銦鎵硒之吸收層物理性質。將其各參數製備成元件(Ag/退火/ITO(RF,500 nm)/i-ZnO(RF,50 nm)/CdS(CBD,70 nm)/液相燒結/CIGSe(Printed screen,5 μm)/Mo(DC,800 nm)/Al2O3),利用擬太陽能光測試儀器測試其電池之轉換效率。
    經過實驗的顯示結果,網印後且冷壓之兩階段液相燒結的方式(第一階段300 oC,第二階段700 oC~750 oC)所製備之吸收層性質其晶粒為最佳,晶粒大小約為600~700 nm,經由XRD及EDS都可以證明此薄膜為Cu0.8In0.7Ga0.3Se2比例。將不同的組成參數製備元件,三相搭配單相和單相分別可量測出1.1 %及1.5 %的光電轉換效率。


    The non-vacuum processes for Cu(In,Ga)Se2(CIGSe) solar cells have gradually attracted the researchers’ attentions. However, the major problem of the non-vacuum processes is the densification and the purity of the p-type absorption layer.
    In this study, CIGSe thin film solar cells were prepared by using ink-printing on alumina substrates. The p-type layers with the composition of Cu0.8In0.7Ga0.3Se2 were prepared from the inks containing the single-phase CIGSe powder, the mixed powder of Cu2Se, In2Se3, and Ga2Se3, and the mixture of single-phase powder and the mixed powder at the weight ratio of 50:50. The densification involves the one-step and two-step processes at different sintering temperatures. Some of the specimens were underwent the constrained sintering. The CIGSe solar cell was constituted with the stacking form of Ag/ITO/ZnO/CdS/ink-printing CIGSe/Mo/Al2O3. The quality of the absorption layer was analyzed by X-ray diffractometer and field emission of scanning electron microscope equipped with energy dispersive X-ray spectrometer. The performance of the solar cells was evaluated under the standard AM1.5 illumination.
    The experimental results showed that the best condition for the ink-printing CIGSe thin film with a thickness of 5 um was using the two-step process and the single-phase powder, sintering at 700–750 oC, and undergoing constrained sintering. The CIGSe films had the desired composition, good crystallinity, and the grain size of 600–700 nm. The stacked solar cells displayed the power conversion efficiencies of 1.1% and 1.5% for the cells with the CIGSe layers prepared from the 50/50 powder and the single-phase powder.

    目錄II 圖目錄V 摘要XII AbstractXIII 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池的發展 2 1-2-1 Wafer Based 2 1-2-2 薄膜太陽能電池 3 1-3 研究動機與目的 4 第二章 基礎理論與文獻回顧 6 2-1 理論基礎 太陽能電池工作原理 6 2-2 CIGSe薄膜太陽能電池的基本構造 8 2-2-1 基板 9 2-2-2 底電極(back metal contact) 10 2-2-3 主吸收層(absorber layer) 10 2-2-4 緩衝層(buffer layer) 12 2-2-5 窗口層(window layer) 13 2-2-6 金屬電極(metal grid) 14 2-3文獻回顧 14 2-3-1 真空製程14 2-3-2 非真空製程21 第三章 實驗步驟 37 3-1 實驗設備說明 37 3-3-1 DC直流濺鍍系統37 3-3-2 網印機38 3-3-3 RF射頻濺鍍系統38 3-3-4 高溫真空管型爐40 3-3-5 化學水浴相關儀器設備40 3-2 實驗藥品和氣體選擇 40 3-2-1 藥品40 3-2-2 氣體42 3-3 實驗流程 42 3-3-1 基板清洗42 3-3-2 Mo底基板的製備43 3-3-3 粉末原料製備43 3-3-4 油墨製備44 3-3-5 油墨網印45 3-3-6 薄膜液相反應燒結45 3-3-7 緩衝層製備45 3-3-8 ZnO窗口層製備46 3-3-9 ITO透明導電層製備46 3-3-10 上電極47 3-4 實驗參數 47 3-5分析儀器 50 3-5-1 X光繞射分析儀50 3-5-2 場發射掃描式電子顯微鏡50 3-5-3 霍爾量測51 3-5-4 擬太陽能光測試儀51 第四章 結果與討論 58 4-1 CIGSe吸收層之 FE-SEM 表面型態分析 58 4-1-1 未經冷壓之Cu0.8In0.7Ga0.3Se2吸收層58 4-1-2 經冷壓之Cu0.8In0.7Ga0.3Se2吸收層69 4-2 CIGSe吸收層之XRD結構性質分析 74 4-2-1 原料粉末74 4-2-2 未經冷壓之Cu0.8In0.7Ga0.3Se2吸收層77 4-2-3 經冷壓之Cu0.8In0.7Ga0.3Se2吸收層85 4-3 CIGSe吸收層之 EDS成份分析 89 4-3-1 原料粉末89 4-3-2 Cu0.8In0.7Ga0.3Se2吸收層92 4-4 電性量測 97 4-5電池的製備與分析 101 4-5-1 CIGSe 吸收層太陽能電池之光電轉換效率101 第五章 結論 106 參考文獻 108

    1
    京都議定書
    2
    柯志昇,綠色能源當道-全球太陽能電池市場與產業發展趨勢分析
    3
    H. J. Moller , Semiconductor For Solar Cell, Landon, Artech House, 1993
    4
    李芳存,”以硒化銦和硒化銅作為緩衝層之硒化銅銦鎵薄膜太陽能電池” 國 立
    中 央 大 學 電 機 工 程 研 究 所,碩 士 論 文,(2009)
    5
    Friedrich Kessler, Dominik Rudmann. ” Technological aspects of flexible CIGS
    solar cells and modules ” Solar Energy 77 (2004) 685–695.
    6
    黃偉倫,”能帶偏移與缺陷參數對CIGS 太陽能薄膜電池影響之數值模擬”國立
    東華大學光電工程研究所,碩士論文,(2009)
    7
    S. Pookpanratana,_ I. Repins, M. Bar, L. Weinhardt, Y. Zhang, R. Felix, M. Blum,
    W. Yang,and C. Heske” CdS/Cu(In,Ga)Se2 interface formation in high-efficiency
    thin film solar cells” APPLIED PHYSICS LETTERS 97, 074101 _2010_
    8
    L. Weinhardt, M. Bar, S. Pookpanratana, M. Morkel, T. P. Niesen, F. Karg, K.
    Ramanathan, M. A. Contreras, R. Noufi, E. Umbach, and C. Heske” Sulfur
    gradient-driven Se diffusion at the CdS/CuIn(S,Se)2 solar cell interface” APPLIED PHYSICS LETTERS 96, 182102 _2010_
    9
    A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D.
    Rudmann, A. N. Tiwari, Prog. Photovolt., 12 (2004) 93.
    10
    Ingrid Repins , y , Miguel A. Contreras , Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins,Bobby To and Rommel Noufi.”19.9%-efficient
    ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factorz” Prog. Photovolt: Res.
    Appl. 2008; 16:235–239.
    11
    Kannan Ramanathan, Miguel A. Contreras, Craig L. Perkins, Sally Asher, Falah S.
    Hasoon, James Keane, David Young, Manuel Romero, Wyatt Metzger, Rommel
    Noufi, James Ward and Anna Duda, ” Properties of 19_2% Efficiency
    ZnO/CdS/CuInGaSe2 Thin-film Solar Cells” Prog. Photovolt: Res. Appl. 2003;
    11:225–230 (DOI: 10.1002/pip.494)
    12
    G.S. Chen , J.C.Yang , Y.C.Chan , L.C.Yang , WelsonHuang, ” Another route to
    fabricate single-phase chalcogenides by post-selenization of Cu–In–Ga precursors
    sputter deposited from a single ternary target,” Solar Energy Materials & Solar Cells 93 (2009) 1351–1355
    13
    Min Sik Kim, R. B. V. Chalapathy, Kyung Hoon Yoon, and Byung Tae Ahn, ”
    Grain Growth Enhancement and Ga Distribution of Cu„In0.7Ga0.3…Se2 Film
    Using Cu2Se Layer on Cu–In–Ga Metal Precursor” Journal of The
    Electrochemical Society, 157 _1_ B154-B158 _2010_
    14
    HWang, Y Zhang, X L Kou, Y A Cai,W Liu, T Yu, J B Pang, C J Li and Y Sun, ”
    Effect of substrate temperature on the structural and electrical properties of CIGS 110 films based on the one-stage co-evaporation process ” Semicond. Sci. Technol. 25 (2010) 055007
    15
    P.J. Sebastian, M.E. Calixto R.N. Bhattacharya Rommel Nou, ” CIS and CIGS
    based photovoltaic structures developed from electrodeposited precursors” Solar Energy Materials & Solar Cells 59 (1999) 125}135.
    16
    R.N. Bhattacharya, J.F. Hiltner, W. Batchelor, M.A. Contreras, R.N. Noufi, J.R.
    Sites. ” 15.4% CuIn1-xGaxSe2-based photovoltaic cells from solution-based
    precursor films”. Thin Solid Films 361±362 (2000) 396±399.
    17
    Jung-Min Cho, Chang-Woo Ham, Eun-Jin Bae, Jeong-Dae Suh and Ki-Bong
    Song, ” CIGS Thin Film Fabrication Using Spray Deposition Method”
    18
    Qijie Guo, Grayson M. Ford, Hugh W. Hillhouse, and Rakesh Agrawal.” Sulfide
    Nanocrystal Inks for Dense Cu(In1-xGax)(S1-ySey)2 Absorber Films and Their
    Photovoltaic Performance”NANO LETTERS 2009 Vol.9,No.8 3060-3065
    19
    Jong WonPark, YoungWooChoi, EunjooLee, OhShimJoo, SunghoYoon,
    ByoungKounMin. ” Synthesis of CIGS absorber layers via a paste coating ”
    Journal of Crystal Growth 311 (2009) 2621–2625
    20
    SeJin Ahn, ChaeWoong Kim, Jae Ho Yun, Jihye Gwak, Sunho Jeong,
    Beyong-Hwan Ryu, and KyungHoon Yoon. ” CuInSe2 (CIS) Thin Film Solar
    Cells by Direct Coating and Selenization of Solution Precursors ” J. Phys. Chem. C
    2010, 114, 8108–8113
    21 Matthew G. Panthani,Vahid Akhavan,Brian Goodfellow, Johanna P. Schmidtke,
    Lawrence Dunn, Ananth Dodabalapur,Paul F. Barbara, and Brian A. Korgel,
    “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks”
    for Printable Photovoltaics” 2008 JOURNAL OF THE AMERICAN CHEMICAL
    SOCIETY.
    22
    David B. Mitzi, Min Yuan, Wei Liu, Andrew J. Kellock, S. Jay Chey, Lynne
    Gignac, Alex G. Schrott,“Hydrazine-based deposition route for device-quality
    CIGS films” Thin Solid Films 517 2009 2158–2162
    23
    Min Yuan, David B. Mitzi , Oki Gunawan , Andrew J. Kellock , S. Jay Chey ,
    Vaughn R. Deline,“Antimony assisted low-temperature processing of CuIn1−
    xGaxSe2−ySy solar cells” Thin Solid Films 519 2010 852–856
    24
    吳先本,“濺鍍法製備硒化銅錫鋅薄膜太陽能電池及其分析”國立台灣科技大
    學,碩士學位論文,2009.
    25
    張振昌,“化學水浴沉積法成長硫化鎘薄膜之研究”國立中山大學材料科學研
    究所,碩士學位論文,(2006).
    26
    Li Zhang, QingHe, Wei-LongJiang, Fang-FangLiu,Chang-JianLi,YunSun,“Effects
    of substrate temperature on the structural and electrical properties of Cu(In,Ga)Se2 thin films” Solar Energy Materials & Solar Cells 93 2009 114–118
    27
    David B. Mitzi, Min Yuan, Wei Liu, Andrew J. Kellock, S. Jay Chey, Lynne 111
    Gignac, Alex G. Schrott,“Hydrazine-based deposition route for device-quality
    CIGS films” Thin Solid Films 517 2009 2158–2162
    28
    Jong WonPark, YoungWooChoi, EunjooLee, OhShimJoo, SunghoYoon,
    ByoungKounMin. ” Synthesis of CIGS absorber layers via a paste coating ”
    Journal of Crystal Growth 311 2009 2621–2625

    無法下載圖示 全文公開日期 2014/07/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE